Namespaces
Variants
Actions

Difference between revisions of "Iterate"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(TeX done)
 
Line 1: Line 1:
 
The result of repeated application of a mathematical operation. Thus, if
 
The result of repeated application of a mathematical operation. Thus, if
 +
$$
 +
y = f(x) \equiv f_1(x)
 +
$$
 +
is a function of $x$, then the functions
 +
$$
 +
f_2(x) = f[f_1(x)] \,,\ \ldots\ ,\,f_n(x) = f[f_{n-1}(x)]
 +
$$
 +
are called the second, $\ldots$, $n$-th iterates of $f(x)$. E.g., putting $f(x) = x^\alpha$ one obtains
 +
$$
 +
f_2(x) = x^{\alpha^2} \,,\ \ldots\ ,\,f_n(x) = x^{\alpha^n} \ .
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052990/i0529901.png" /></td> </tr></table>
+
The index $n$ is called the ''exponent'' of the iterate, while transition from $f(x)$ to $f_2(x),f_3(x),\ldots$ is called ''iteration''. Iterates with an arbitrary real, or even complex, exponent can be defined for certain classes of functions. Iterates are used in the solution of various kinds of equations and systems of equations by iteration methods. For more information, see [[Sequential approximation, method of]].
  
is a function of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052990/i0529902.png" />, then the functions
+
====References====
 
+
<table>
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052990/i0529903.png" /></td> </tr></table>
+
<TR><TD valign="top">[1]</TD> <TD valign="top"> L. Collatz,  "Funktionalanalysis und numerische Mathematik" , Springer  (1964)</TD></TR>
 
+
</table>
are called the second<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052990/i0529904.png" />-th iterates of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052990/i0529905.png" />. E.g., putting <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052990/i0529906.png" /> one obtains
 
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052990/i0529907.png" /></td> </tr></table>
 
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052990/i0529908.png" /></td> </tr></table>
 
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052990/i0529909.png" /></td> </tr></table>
 
 
 
The index <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052990/i05299010.png" /> is called the exponent of the iterate, while transition from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052990/i05299011.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052990/i05299012.png" /> is called iteration. Iterates with an arbitrary real, or even complex, exponent can be defined for certain classes of functions. Iterates are used in the solution of various kinds of equations and systems of equations by iteration methods. For more information, see [[Sequential approximation, method of|Sequential approximation, method of]].
 
  
====References====
+
{{TEX|done}}
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  L. Collatz,  "Funktionalanalysis und numerische Mathematik" , Springer  (1964)</TD></TR></table>
 

Latest revision as of 17:21, 8 September 2017

The result of repeated application of a mathematical operation. Thus, if $$ y = f(x) \equiv f_1(x) $$ is a function of $x$, then the functions $$ f_2(x) = f[f_1(x)] \,,\ \ldots\ ,\,f_n(x) = f[f_{n-1}(x)] $$ are called the second, $\ldots$, $n$-th iterates of $f(x)$. E.g., putting $f(x) = x^\alpha$ one obtains $$ f_2(x) = x^{\alpha^2} \,,\ \ldots\ ,\,f_n(x) = x^{\alpha^n} \ . $$

The index $n$ is called the exponent of the iterate, while transition from $f(x)$ to $f_2(x),f_3(x),\ldots$ is called iteration. Iterates with an arbitrary real, or even complex, exponent can be defined for certain classes of functions. Iterates are used in the solution of various kinds of equations and systems of equations by iteration methods. For more information, see Sequential approximation, method of.

References

[1] L. Collatz, "Funktionalanalysis und numerische Mathematik" , Springer (1964)
How to Cite This Entry:
Iterate. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Iterate&oldid=12053
This article was adapted from an original article by BSE-3 (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article