Namespaces
Variants
Actions

Difference between revisions of "Rabinowitsch trick"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (AUTOMATIC EDIT (latexlist): Replaced 10 formulas out of 10 by TEX code with an average confidence of 2.0 and a minimal confidence of 2.0.)
 
Line 1: Line 1:
This "trick"  deduces the general Hilbert Nullstellensatz (cf. [[Hilbert theorem|Hilbert theorem]]) from the special case that the polynomials have no common zeros. Indeed, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130010/r1300101.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130010/r1300102.png" /> is a [[Field|field]]. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130010/r1300103.png" /> vanishes on the common zeros of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130010/r1300104.png" />, then there are polynomials <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130010/r1300105.png" /> such that
+
<!--This article has been texified automatically. Since there was no Nroff source code for this article,  
 +
the semi-automatic procedure described at https://encyclopediaofmath.org/wiki/User:Maximilian_Janisch/latexlist
 +
was used.
 +
If the TeX and formula formatting is correct, please remove this message and the {{TEX|semi-auto}} category.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130010/r1300106.png" /></td> </tr></table>
+
Out of 10 formulas, 10 were replaced by TEX code.-->
  
Substitution of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130010/r1300107.png" /> into this identity and clearing out the denominator shows that
+
{{TEX|semi-auto}}{{TEX|done}}
 +
This  "trick" deduces the general Hilbert Nullstellensatz (cf. [[Hilbert theorem|Hilbert theorem]]) from the special case that the polynomials have no common zeros. Indeed, let $f , f _ { 1 } , \dots , f _ { m } \in R : = k [ x _ { 1 } , \dots , x _ { n } ]$, where $k$ is a [[Field|field]]. If $f$ vanishes on the common zeros of $f _ { 1 } , \ldots , f _ { m }$, then there are polynomials $a _ { 0 } , a _ { 1 } , \dots , a _ { m } \in R [ x _ { 0 } ]$ such that
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130010/r1300108.png" /></td> </tr></table>
+
\begin{equation*} a _ { 0 } ( 1 - x _ { 0 } f ) + a _ { 1 } f _ { 1 } + \ldots + a _ { m } f _ { m } = 1. \end{equation*}
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130010/r1300109.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130010/r13001010.png" />. This ingenious device was published in the one(!) page article [[#References|[a1]]].
+
Substitution of $x _ { 0 } = 1 / f$ into this identity and clearing out the denominator shows that
 +
 
 +
\begin{equation*} b _ { 1 } f _ { 1 } + \ldots + b _ { m } f _ { m } = f ^ { \mu }, \end{equation*}
 +
 
 +
where $\mu : = \operatorname { max } \operatorname { deg } _ { x _ { 0 } } a _ { i }$ and $b _ { j } = a _ { j } |_{x _ { 0 } = 1 / f} f ^ { \mu }$. This ingenious device was published in the one(!) page article [[#References|[a1]]].
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  J.L. Rabinowitsch,  "Zum Hilbertschen Nullstellensatz"  ''Math. Ann.'' , '''102'''  (1929)  pp. 520,}</TD></TR></table>
+
<table><tr><td valign="top">[a1]</td> <td valign="top">  J.L. Rabinowitsch,  "Zum Hilbertschen Nullstellensatz"  ''Math. Ann.'' , '''102'''  (1929)  pp. 520,}</td></tr></table>

Latest revision as of 17:00, 1 July 2020

This "trick" deduces the general Hilbert Nullstellensatz (cf. Hilbert theorem) from the special case that the polynomials have no common zeros. Indeed, let $f , f _ { 1 } , \dots , f _ { m } \in R : = k [ x _ { 1 } , \dots , x _ { n } ]$, where $k$ is a field. If $f$ vanishes on the common zeros of $f _ { 1 } , \ldots , f _ { m }$, then there are polynomials $a _ { 0 } , a _ { 1 } , \dots , a _ { m } \in R [ x _ { 0 } ]$ such that

\begin{equation*} a _ { 0 } ( 1 - x _ { 0 } f ) + a _ { 1 } f _ { 1 } + \ldots + a _ { m } f _ { m } = 1. \end{equation*}

Substitution of $x _ { 0 } = 1 / f$ into this identity and clearing out the denominator shows that

\begin{equation*} b _ { 1 } f _ { 1 } + \ldots + b _ { m } f _ { m } = f ^ { \mu }, \end{equation*}

where $\mu : = \operatorname { max } \operatorname { deg } _ { x _ { 0 } } a _ { i }$ and $b _ { j } = a _ { j } |_{x _ { 0 } = 1 / f} f ^ { \mu }$. This ingenious device was published in the one(!) page article [a1].

References

[a1] J.L. Rabinowitsch, "Zum Hilbertschen Nullstellensatz" Math. Ann. , 102 (1929) pp. 520,}
How to Cite This Entry:
Rabinowitsch trick. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Rabinowitsch_trick&oldid=12019
This article was adapted from an original article by W. Dale Brownawell (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article