Difference between revisions of "Gibbs phenomenon"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | g0444101.png | ||
+ | $#A+1 = 42 n = 0 | ||
+ | $#C+1 = 42 : ~/encyclopedia/old_files/data/G044/G.0404410 Gibbs phenomenon | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
A characteristic of the behaviour of the partial sums (or their averages) of a [[Fourier series|Fourier series]]. | A characteristic of the behaviour of the partial sums (or their averages) of a [[Fourier series|Fourier series]]. | ||
Line 5: | Line 17: | ||
Figure: g044410a | Figure: g044410a | ||
− | First noted by H. Wilbraham [[#References|[1]]] and rediscovered by J.W. Gibbs [[#References|[2]]] at a much later date. Let the partial sums | + | First noted by H. Wilbraham [[#References|[1]]] and rediscovered by J.W. Gibbs [[#References|[2]]] at a much later date. Let the partial sums $ s _ {n} $ |
+ | of the Fourier series of a function $ f $ | ||
+ | converge to $ f $ | ||
+ | in some neighbourhood $ \{ {x } : {0 < | x - x _ {0} | < h } \} $ | ||
+ | of a point $ x _ {0} $ | ||
+ | at which | ||
− | + | $$ | |
+ | a \equiv f( x _ {0} - ) \leq f ( x _ {0} + ) \equiv b. | ||
+ | $$ | ||
− | The Gibbs phenomenon takes place for | + | The Gibbs phenomenon takes place for $ s _ {n} $ |
+ | at $ x _ {0} $ | ||
+ | if $ A < a \leq b < B $ | ||
+ | where | ||
− | + | $$ | |
+ | A = \ | ||
+ | {fnnme \underline{lim} } _ {\begin{array}{c} | ||
+ | n \rightarrow \infty \\ | ||
+ | x \uparrow x _ {0} | ||
+ | \end{array} | ||
+ | } \ | ||
+ | s _ {n} ( x), | ||
+ | $$ | ||
− | + | $$ | |
+ | B = \overline{\lim\limits}\; _ {\begin{array}{c} | ||
+ | n \rightarrow \infty \\ | ||
+ | x \downarrow x _ {0} | ||
+ | \end{array} | ||
+ | } s _ {n} ( x). | ||
+ | $$ | ||
− | The geometrical meaning of this is that the graphs (cf. Fig.) of the partial sums | + | The geometrical meaning of this is that the graphs (cf. Fig.) of the partial sums $ s _ {n} $ |
+ | do not approach the "expected" interval $ [ a, b ] $ | ||
+ | on the vertical line $ x = x _ {0} $, | ||
+ | but approach the strictly-larger interval $ [ A, B ] $ | ||
+ | as $ x \rightarrow x _ {0} $ | ||
+ | and $ n \rightarrow \infty $. | ||
+ | The Gibbs phenomenon is defined in an analogous manner for averages of the partial sums of a Fourier series when the latter is summed by some given method. | ||
− | For instance, the following theorems are valid for | + | For instance, the following theorems are valid for $ 2 \pi $- |
+ | periodic functions $ f $ | ||
+ | of bounded variation on $ [ - \pi , \pi ] $[[#References|[3]]]. | ||
− | 1) At points of non-removable discontinuity, and only at such points, the Gibbs phenomenon occurs for | + | 1) At points of non-removable discontinuity, and only at such points, the Gibbs phenomenon occurs for $ s _ {n} $. |
+ | In particular, if $ f( x) = ( \pi - x)/2 $ | ||
+ | for $ 0 < x < 2 \pi $, | ||
+ | then for the point $ x = 0 $ | ||
+ | the segment $ [ a, b] = [- \pi /2 , \pi /2] $, | ||
+ | while the segment $ [ A, B] = [- l, l] $ | ||
+ | where | ||
− | + | $$ | |
+ | l = \int\limits _ { 0 } ^ \pi | ||
− | 2) There exists an absolute constant | + | \frac{\sin t }{t } |
+ | \ | ||
+ | dt \approx 1.85 \dots > { | ||
+ | \frac \pi {2} | ||
+ | } . | ||
+ | $$ | ||
+ | |||
+ | 2) There exists an absolute constant $ \alpha _ {0} $, | ||
+ | $ 0 < \alpha _ {0} < 1 $, | ||
+ | such that the Cesàro averages $ \sigma _ {n} ^ \alpha $ | ||
+ | do not have the Gibbs phenomenon if $ \alpha \geq \alpha _ {0} $, | ||
+ | while if $ \alpha < \alpha _ {0} $ | ||
+ | the phenomenon is observed at all points of non-removable discontinuity of $ f $. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> H. Wilbraham, ''Cambridge and Dublin Math. J.'' , '''3''' (1848) pp. 198–201</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> J.W. Gibbs, ''Nature'' , '''59''' (1898) pp. 200</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> A. Zygmund, "Trigonometric series" , '''1–2''' , Cambridge Univ. Press (1988)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> H. Wilbraham, ''Cambridge and Dublin Math. J.'' , '''3''' (1848) pp. 198–201</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> J.W. Gibbs, ''Nature'' , '''59''' (1898) pp. 200</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> A. Zygmund, "Trigonometric series" , '''1–2''' , Cambridge Univ. Press (1988)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | In a more explicit form the definitions of the constant | + | In a more explicit form the definitions of the constant $ A $ |
+ | and $ B $ | ||
+ | above are: | ||
− | + | $$ | |
+ | A = \lim\limits _ {x \uparrow x _ {0} } \ | ||
+ | \lim\limits _ {n \rightarrow \infty } \ | ||
+ | \inf _ {x < y < x _ {0} } \ | ||
+ | s _ {n} ( y) , | ||
+ | $$ | ||
− | + | $$ | |
+ | B = \lim\limits _ {x \downarrow x _ {0} } \lim\limits _ {n \rightarrow | ||
+ | \infty } \sup _ {x _ {0} < y < x } s _ {n} ( y) . | ||
+ | $$ | ||
− | At an isolated jump discontinuity of | + | At an isolated jump discontinuity of $ f $, |
+ | the ratio $ ( B - A ) / ( b - a ) $ | ||
+ | equals $ ( 2 / \pi ) l = 1.17898 \dots $. | ||
+ | This means that the Fourier series approximation establishes an overshoot of about $ 8.95\pct $ | ||
+ | of the length of the jump at either end of the jump interval. | ||
− | Actually, it was only in a second letter to | + | Actually, it was only in a second letter to $ Nature $([[#References|[a1]]]) that Gibbs stated the phenomenon correctly, though without any proof. For details see [[#References|[a2]]]. |
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> J.W. Gibbs, ''Nature'' , '''59''' (1899) pp. 606</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> H.S. Carslaw, "Introduction to the theory of Fourier's series and integrals" , Dover, reprint (1930)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> J.W. Gibbs, ''Nature'' , '''59''' (1899) pp. 606</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> H.S. Carslaw, "Introduction to the theory of Fourier's series and integrals" , Dover, reprint (1930)</TD></TR></table> |
Latest revision as of 19:41, 5 June 2020
A characteristic of the behaviour of the partial sums (or their averages) of a Fourier series.
Figure: g044410a
First noted by H. Wilbraham [1] and rediscovered by J.W. Gibbs [2] at a much later date. Let the partial sums $ s _ {n} $ of the Fourier series of a function $ f $ converge to $ f $ in some neighbourhood $ \{ {x } : {0 < | x - x _ {0} | < h } \} $ of a point $ x _ {0} $ at which
$$ a \equiv f( x _ {0} - ) \leq f ( x _ {0} + ) \equiv b. $$
The Gibbs phenomenon takes place for $ s _ {n} $ at $ x _ {0} $ if $ A < a \leq b < B $ where
$$ A = \ {fnnme \underline{lim} } _ {\begin{array}{c} n \rightarrow \infty \\ x \uparrow x _ {0} \end{array} } \ s _ {n} ( x), $$
$$ B = \overline{\lim\limits}\; _ {\begin{array}{c} n \rightarrow \infty \\ x \downarrow x _ {0} \end{array} } s _ {n} ( x). $$
The geometrical meaning of this is that the graphs (cf. Fig.) of the partial sums $ s _ {n} $ do not approach the "expected" interval $ [ a, b ] $ on the vertical line $ x = x _ {0} $, but approach the strictly-larger interval $ [ A, B ] $ as $ x \rightarrow x _ {0} $ and $ n \rightarrow \infty $. The Gibbs phenomenon is defined in an analogous manner for averages of the partial sums of a Fourier series when the latter is summed by some given method.
For instance, the following theorems are valid for $ 2 \pi $- periodic functions $ f $ of bounded variation on $ [ - \pi , \pi ] $[3].
1) At points of non-removable discontinuity, and only at such points, the Gibbs phenomenon occurs for $ s _ {n} $. In particular, if $ f( x) = ( \pi - x)/2 $ for $ 0 < x < 2 \pi $, then for the point $ x = 0 $ the segment $ [ a, b] = [- \pi /2 , \pi /2] $, while the segment $ [ A, B] = [- l, l] $ where
$$ l = \int\limits _ { 0 } ^ \pi \frac{\sin t }{t } \ dt \approx 1.85 \dots > { \frac \pi {2} } . $$
2) There exists an absolute constant $ \alpha _ {0} $, $ 0 < \alpha _ {0} < 1 $, such that the Cesàro averages $ \sigma _ {n} ^ \alpha $ do not have the Gibbs phenomenon if $ \alpha \geq \alpha _ {0} $, while if $ \alpha < \alpha _ {0} $ the phenomenon is observed at all points of non-removable discontinuity of $ f $.
References
[1] | H. Wilbraham, Cambridge and Dublin Math. J. , 3 (1848) pp. 198–201 |
[2] | J.W. Gibbs, Nature , 59 (1898) pp. 200 |
[3] | A. Zygmund, "Trigonometric series" , 1–2 , Cambridge Univ. Press (1988) |
Comments
In a more explicit form the definitions of the constant $ A $ and $ B $ above are:
$$ A = \lim\limits _ {x \uparrow x _ {0} } \ \lim\limits _ {n \rightarrow \infty } \ \inf _ {x < y < x _ {0} } \ s _ {n} ( y) , $$
$$ B = \lim\limits _ {x \downarrow x _ {0} } \lim\limits _ {n \rightarrow \infty } \sup _ {x _ {0} < y < x } s _ {n} ( y) . $$
At an isolated jump discontinuity of $ f $, the ratio $ ( B - A ) / ( b - a ) $ equals $ ( 2 / \pi ) l = 1.17898 \dots $. This means that the Fourier series approximation establishes an overshoot of about $ 8.95\pct $ of the length of the jump at either end of the jump interval.
Actually, it was only in a second letter to $ Nature $([a1]) that Gibbs stated the phenomenon correctly, though without any proof. For details see [a2].
References
[a1] | J.W. Gibbs, Nature , 59 (1899) pp. 606 |
[a2] | H.S. Carslaw, "Introduction to the theory of Fourier's series and integrals" , Dover, reprint (1930) |
Gibbs phenomenon. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Gibbs_phenomenon&oldid=12010