Difference between revisions of "Perron integral"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | p0723601.png | ||
+ | $#A+1 = 17 n = 0 | ||
+ | $#C+1 = 17 : ~/encyclopedia/old_files/data/P072/P.0702360 Perron integral | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | A generalization of the concept of the [[Lebesgue integral|Lebesgue integral]]. A function $ f $ | |
+ | is said to be integrable in the sense of Perron over $ [ a, b] $ | ||
+ | if there exist functions $ M $( | ||
+ | a major function) and $ m $( | ||
+ | a minor function) such that | ||
− | ( | + | $$ |
+ | M( a) = 0,\ \ | ||
+ | \underline{D} M ( x) \geq f( x),\ \ | ||
+ | \underline{D} M( x) \neq - \infty , | ||
+ | $$ | ||
− | + | $$ | |
+ | m( a) = 0,\ \overline{D}\; m( x) \leq f( x),\ \overline{D}\; m( x) \neq + \infty | ||
+ | $$ | ||
+ | |||
+ | ( $ \underline{D} $ | ||
+ | and $ \overline{D}\; $ | ||
+ | are the upper and lower derivatives) for $ x \in [ a, b] $, | ||
+ | and if the lower bound to the values $ M( b) $ | ||
+ | of the majorants $ M $ | ||
+ | is equal to the upper bound of the values $ m( b) $ | ||
+ | of the minorants $ m $. | ||
+ | Their common value is called the Perron integral of $ f $ | ||
+ | over $ [ a, b] $ | ||
+ | and is denoted by | ||
+ | |||
+ | $$ | ||
+ | ( P) \int\limits _ { a } ^ { b } f( x) dx. | ||
+ | $$ | ||
The Perron integral recovers a function from its pointwise finite derivative; it is equivalent to the narrow [[Denjoy integral|Denjoy integral]]. The Perron integral for bounded functions was introduced by O. Perron [[#References|[1]]], while the final definition was given by H. Bauer [[#References|[2]]]. | The Perron integral recovers a function from its pointwise finite derivative; it is equivalent to the narrow [[Denjoy integral|Denjoy integral]]. The Perron integral for bounded functions was introduced by O. Perron [[#References|[1]]], while the final definition was given by H. Bauer [[#References|[2]]]. | ||
Line 13: | Line 46: | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> O. Perron, "Ueber den Integralbegriff" ''Sitzungsber. Heidelberg. Akad. Wiss.'' , '''VA''' (1914) pp. 1–16</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> H. Bauer, "Der Perronsche Integralbegriff und seine Beziehung auf Lebesguesschen" ''Monatsh. Math. Phys.'' , '''26''' (1915) pp. 153–198</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> S. Saks, "Theory of the integral" , Hafner (1952) (Translated from French)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> I.A. Vinogradova, V.A. Skvortsov, "Generalized integrals and Fourier series" ''Itogi Nauk. Mat. Anal. 1970'' (1971) pp. 67–107 (In Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> O. Perron, "Ueber den Integralbegriff" ''Sitzungsber. Heidelberg. Akad. Wiss.'' , '''VA''' (1914) pp. 1–16</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> H. Bauer, "Der Perronsche Integralbegriff und seine Beziehung auf Lebesguesschen" ''Monatsh. Math. Phys.'' , '''26''' (1915) pp. 153–198</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> S. Saks, "Theory of the integral" , Hafner (1952) (Translated from French)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> I.A. Vinogradova, V.A. Skvortsov, "Generalized integrals and Fourier series" ''Itogi Nauk. Mat. Anal. 1970'' (1971) pp. 67–107 (In Russian)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
Perron's method is easier than Denjoy's, but Denjoy's method is more constructive. See (the editorial comments to) [[Denjoy integral|Denjoy integral]]. | Perron's method is easier than Denjoy's, but Denjoy's method is more constructive. See (the editorial comments to) [[Denjoy integral|Denjoy integral]]. | ||
− | For the definition of a major function and a minor function of | + | For the definition of a major function and a minor function of $ f $ |
+ | see (the editorial comments to) [[Perron–Stieltjes integral|Perron–Stieltjes integral]]. |
Latest revision as of 08:05, 6 June 2020
A generalization of the concept of the Lebesgue integral. A function $ f $
is said to be integrable in the sense of Perron over $ [ a, b] $
if there exist functions $ M $(
a major function) and $ m $(
a minor function) such that
$$ M( a) = 0,\ \ \underline{D} M ( x) \geq f( x),\ \ \underline{D} M( x) \neq - \infty , $$
$$ m( a) = 0,\ \overline{D}\; m( x) \leq f( x),\ \overline{D}\; m( x) \neq + \infty $$
( $ \underline{D} $ and $ \overline{D}\; $ are the upper and lower derivatives) for $ x \in [ a, b] $, and if the lower bound to the values $ M( b) $ of the majorants $ M $ is equal to the upper bound of the values $ m( b) $ of the minorants $ m $. Their common value is called the Perron integral of $ f $ over $ [ a, b] $ and is denoted by
$$ ( P) \int\limits _ { a } ^ { b } f( x) dx. $$
The Perron integral recovers a function from its pointwise finite derivative; it is equivalent to the narrow Denjoy integral. The Perron integral for bounded functions was introduced by O. Perron [1], while the final definition was given by H. Bauer [2].
References
[1] | O. Perron, "Ueber den Integralbegriff" Sitzungsber. Heidelberg. Akad. Wiss. , VA (1914) pp. 1–16 |
[2] | H. Bauer, "Der Perronsche Integralbegriff und seine Beziehung auf Lebesguesschen" Monatsh. Math. Phys. , 26 (1915) pp. 153–198 |
[3] | S. Saks, "Theory of the integral" , Hafner (1952) (Translated from French) |
[4] | I.A. Vinogradova, V.A. Skvortsov, "Generalized integrals and Fourier series" Itogi Nauk. Mat. Anal. 1970 (1971) pp. 67–107 (In Russian) |
Comments
Perron's method is easier than Denjoy's, but Denjoy's method is more constructive. See (the editorial comments to) Denjoy integral.
For the definition of a major function and a minor function of $ f $ see (the editorial comments to) Perron–Stieltjes integral.
Perron integral. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Perron_integral&oldid=11984