|
|
Line 1: |
Line 1: |
| + | <!-- |
| + | g0444601.png |
| + | $#A+1 = 149 n = 0 |
| + | $#C+1 = 149 : ~/encyclopedia/old_files/data/G044/G.0404460 Global structure of trajectories |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| + | |
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| + | |
| ''of a quadratic differential'' | | ''of a quadratic differential'' |
| | | |
− | A description of the behaviour as a whole of trajectories of a positive [[Quadratic differential|quadratic differential]] on a compact oriented [[Riemann surface|Riemann surface]] (cf. [[Quadratic differential|Quadratic differential]] for the definition of trajectory in this setting). Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g0444601.png" /> be a compact oriented Riemann surface, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g0444602.png" /> be a positive quadratic differential on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g0444603.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g0444604.png" /> be the set of all zeros and simple poles of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g0444605.png" />, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g0444606.png" /> be the set of poles of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g0444607.png" /> of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g0444608.png" />. The trajectories of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g0444609.png" /> form a family <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g04446010.png" /> which has many of the properties of regular families of curves. This family of curves covers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g04446011.png" /> except for the points of the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g04446012.png" />, i.e. through every point of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g04446013.png" /> passes a unique element of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g04446014.png" />. The behaviour of a trajectory of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g04446015.png" /> in a neighbourhood of any point of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g04446016.png" /> is described by the local structure of the trajectories of the quadratic differential (cf. [[Local structure of trajectories|Local structure of trajectories]]). In considering the global structure of the curves of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g04446017.png" /> at the points of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g04446018.png" />, an important role is played by the following unions of trajectories. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g04446019.png" /> be the union of all trajectories of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g04446020.png" /> having limit end points at some point of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g04446021.png" />; let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g04446022.png" /> be the subset of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g04446023.png" /> that is the union of all the trajectories of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g04446024.png" /> which have one limit end point at a point of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g04446025.png" /> and a second limit end point at a point of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g04446026.png" />. | + | A description of the behaviour as a whole of trajectories of a positive [[Quadratic differential|quadratic differential]] on a compact oriented [[Riemann surface|Riemann surface]] (cf. [[Quadratic differential|Quadratic differential]] for the definition of trajectory in this setting). Let $ R $ |
| + | be a compact oriented Riemann surface, let $ Q( z) d z ^ {2} $ |
| + | be a positive quadratic differential on $ R $, |
| + | let $ C $ |
| + | be the set of all zeros and simple poles of $ Q( z) d z ^ {2} $, |
| + | and let $ H $ |
| + | be the set of poles of $ Q( z) d z ^ {2} $ |
| + | of order $ \geq 2 $. |
| + | The trajectories of $ Q ( z) d z ^ {2} $ |
| + | form a family $ F $ |
| + | which has many of the properties of regular families of curves. This family of curves covers $ R $ |
| + | except for the points of the set $ C \cup H $, |
| + | i.e. through every point of $ R \setminus ( C \cup H) $ |
| + | passes a unique element of $ F $. |
| + | The behaviour of a trajectory of $ Q( z) d z ^ {2} $ |
| + | in a neighbourhood of any point of $ R $ |
| + | is described by the local structure of the trajectories of the quadratic differential (cf. [[Local structure of trajectories|Local structure of trajectories]]). In considering the global structure of the curves of $ F $ |
| + | at the points of $ R \setminus H $, |
| + | an important role is played by the following unions of trajectories. Let $ \Phi $ |
| + | be the union of all trajectories of $ Q( z) d z ^ {2} $ |
| + | having limit end points at some point of $ C $; |
| + | let $ \Lambda $ |
| + | be the subset of $ \Phi $ |
| + | that is the union of all the trajectories of $ Q( z) d z ^ {2} $ |
| + | which have one limit end point at a point of $ C $ |
| + | and a second limit end point at a point of $ C \cup H $. |
| | | |
− | A set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g04446027.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g04446028.png" /> is called an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g04446030.png" />-set with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g04446031.png" /> if each trajectory of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g04446032.png" /> intersecting with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g04446033.png" /> is completely contained in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g04446034.png" />. The internal closure of the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g04446035.png" /> is defined as the interior of the closure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g04446036.png" /> and is denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g04446037.png" />. The internal closure of an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g04446038.png" />-set is also an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g04446039.png" />-set. The terminal domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g04446040.png" /> with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g04446041.png" /> is the largest connected open <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g04446042.png" />-set on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g04446043.png" /> with the following properties: 1) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g04446044.png" /> contains no points of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g04446045.png" />; 2) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g04446046.png" /> is filled with trajectories of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g04446047.png" />, each one of which has a limit end point in each one of the two possible directions at a given point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g04446048.png" />; and 3) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g04446049.png" /> is conformally mapped by the function | + | A set $ K $ |
| + | on $ R $ |
| + | is called an $ F $- |
| + | set with respect to $ Q( z) d z ^ {2} $ |
| + | if each trajectory of $ Q( z) d z ^ {2} $ |
| + | intersecting with $ K $ |
| + | is completely contained in $ K $. |
| + | The internal closure of the set $ K $ |
| + | is defined as the interior of the closure $ \overline{K}\; $ |
| + | and is denoted by $ \widehat{K} $. |
| + | The internal closure of an $ F $- |
| + | set is also an $ F $- |
| + | set. The terminal domain $ E $ |
| + | with respect to $ Q( z) d z ^ {2} $ |
| + | is the largest connected open $ F $- |
| + | set on $ R $ |
| + | with the following properties: 1) $ E $ |
| + | contains no points of $ C \cup H $; |
| + | 2) $ E $ |
| + | is filled with trajectories of $ Q( z) d z ^ {2} $, |
| + | each one of which has a limit end point in each one of the two possible directions at a given point $ A \in H $; |
| + | and 3) $ E $ |
| + | is conformally mapped by the function |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g04446050.png" /></td> </tr></table>
| + | $$ |
| + | \zeta = \int\limits [ Q ( z)] ^ {1/2} dz |
| + | $$ |
| | | |
− | onto the left or right half-plane of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g04446051.png" />-plane (depending on the choice of the branch of the root). It follows from the local structure of the trajectories of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g04446052.png" /> that the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g04446053.png" /> should be a pole of the differential <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g04446054.png" /> of order at least three. | + | onto the left or right half-plane of the $ \zeta $- |
| + | plane (depending on the choice of the branch of the root). It follows from the local structure of the trajectories of $ Q( z) d z ^ {2} $ |
| + | that the point $ A $ |
| + | should be a pole of the differential $ Q( z) d z ^ {2} $ |
| + | of order at least three. |
| | | |
− | The strip-like domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g04446055.png" /> with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g04446056.png" /> is the largest connected open <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g04446057.png" />-set on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g04446058.png" /> with the following properties: 1) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g04446059.png" /> contains no points of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g04446060.png" />; 2) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g04446061.png" /> is filled with the trajectories of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g04446062.png" />, each one of which has at one point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g04446063.png" /> a limit end point in one direction and at another point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g04446064.png" /> (which may coincide with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g04446065.png" />) a limit end point in the other direction; and 3) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g04446066.png" /> is conformally mapped by the function | + | The strip-like domain $ S $ |
| + | with respect to $ Q( z) d z ^ {2} $ |
| + | is the largest connected open $ F $- |
| + | set on $ R $ |
| + | with the following properties: 1) $ S $ |
| + | contains no points of $ C \cup H $; |
| + | 2) $ S $ |
| + | is filled with the trajectories of $ Q( z) d z ^ {2} $, |
| + | each one of which has at one point $ A \in H $ |
| + | a limit end point in one direction and at another point $ B \in H $( |
| + | which may coincide with $ A $) |
| + | a limit end point in the other direction; and 3) $ S $ |
| + | is conformally mapped by the function |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g04446067.png" /></td> </tr></table>
| + | $$ |
| + | \zeta = \int\limits [ Q ( z)] ^ {1/2} dz |
| + | $$ |
| | | |
− | onto the strip <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g04446068.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g04446069.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g04446070.png" /> are finite real numbers and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g04446071.png" />. The points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g04446072.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g04446073.png" /> may be poles of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g04446074.png" /> of order two or larger. | + | onto the strip $ a < \mathop{\rm Im} \zeta < b $, |
| + | where $ a $ |
| + | and $ b $ |
| + | are finite real numbers and $ a < b $. |
| + | The points $ A $ |
| + | and $ B $ |
| + | may be poles of $ Q( z) d z ^ {2} $ |
| + | of order two or larger. |
| | | |
− | The circular domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g04446075.png" /> with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g04446076.png" /> is the largest connected open <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g04446077.png" />-set on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g04446078.png" /> with the following properties: 1) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g04446079.png" /> contains a unique double pole <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g04446080.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g04446081.png" />; 2) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g04446082.png" /> is filled with the trajectories of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g04446083.png" /> each one of which is a closed Jordan curve which separates <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g04446084.png" /> from the boundary of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g04446085.png" />; and 3) if a purely-imaginary constant <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g04446086.png" /> has been suitably chosen, the function | + | The circular domain $ {\mathcal C} $ |
| + | with respect to $ Q( z) d z ^ {2} $ |
| + | is the largest connected open $ F $- |
| + | set on $ R $ |
| + | with the following properties: 1) $ {\mathcal C} $ |
| + | contains a unique double pole $ A $ |
| + | of $ Q( z) d z ^ {2} $; |
| + | 2) $ {\mathcal C} \setminus A $ |
| + | is filled with the trajectories of $ Q( z) d z ^ {2} $ |
| + | each one of which is a closed Jordan curve which separates $ A $ |
| + | from the boundary of $ {\mathcal C} $; |
| + | and 3) if a purely-imaginary constant $ c $ |
| + | has been suitably chosen, the function |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g04446087.png" /></td> </tr></table>
| + | $$ |
| + | w = \mathop{\rm exp} \left \{ c \int\limits [ Q ( z)] ^ {1/2} dz \right \} , |
| + | $$ |
| | | |
− | supplemented by the value zero at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g04446088.png" />, conformally maps <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g04446089.png" /> onto a disc <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g04446090.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g04446091.png" /> is mapped to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g04446092.png" />. | + | supplemented by the value zero at $ A $, |
| + | conformally maps $ {\mathcal C} $ |
| + | onto a disc $ | w | < R $, |
| + | and $ A $ |
| + | is mapped to $ w = 0 $. |
| | | |
− | The annular domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g04446093.png" /> with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g04446094.png" /> is the largest connected <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g04446095.png" />-set on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g04446096.png" /> with the following properties: 1) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g04446097.png" /> does not contain any points of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g04446098.png" />; 2) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g04446099.png" /> is filled with trajectories of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g044460100.png" /> each one of which is a closed Jordan curve; and 3) if a purely-imaginary constant <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g044460101.png" /> is suitably chosen, the function | + | The annular domain $ D $ |
| + | with respect to $ Q( z) d z ^ {2} $ |
| + | is the largest connected $ F $- |
| + | set on $ R $ |
| + | with the following properties: 1) $ D $ |
| + | does not contain any points of $ C \cup H $; |
| + | 2) $ D $ |
| + | is filled with trajectories of $ Q( z) d z ^ {2} $ |
| + | each one of which is a closed Jordan curve; and 3) if a purely-imaginary constant $ c $ |
| + | is suitably chosen, the function |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g044460102.png" /></td> </tr></table>
| + | $$ |
| + | w = \mathop{\rm exp} \left \{ c \int\limits [ Q ( z)] ^ {1/2} dz \right \} |
| + | $$ |
| | | |
− | conformally maps <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g044460103.png" /> onto a circular annulus <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g044460104.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g044460105.png" />. | + | conformally maps $ D $ |
| + | onto a circular annulus $ r _ {1} < | w | \leq r _ {2} $, |
| + | $ 0 < r _ {1} < r _ {2} $. |
| | | |
− | The dense domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g044460106.png" /> with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g044460107.png" /> is the largest connected <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g044460108.png" />-set on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g044460109.png" /> with the following properties: 1) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g044460110.png" /> does not contain any points of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g044460111.png" />; and 2) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g044460112.png" /> is filled with trajectories of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g044460113.png" />, each one of which is everywhere-dense in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g044460114.png" />. | + | The dense domain $ {\mathcal F} $ |
| + | with respect to $ Q( z) d z ^ {2} $ |
| + | is the largest connected $ F $- |
| + | set on $ R $ |
| + | with the following properties: 1) $ {\mathcal F} $ |
| + | does not contain any points of $ H $; |
| + | and 2) $ {\mathcal F} \setminus C $ |
| + | is filled with trajectories of $ Q( z) d z ^ {2} $, |
| + | each one of which is everywhere-dense in $ {\mathcal F} $. |
| | | |
− | The basic structure theorem is valid [[#References|[2]]]. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g044460115.png" /> be a compact oriented Riemann surface and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g044460116.png" /> be a positive quadratic differential on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g044460117.png" />, while excluding the following possible cases and all configurations obtainable from such cases by way of a [[Conformal mapping|conformal mapping]]: I. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g044460118.png" /> is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g044460119.png" />-sphere, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g044460120.png" />; II. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g044460121.png" /> is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g044460122.png" />-sphere, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g044460123.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g044460124.png" /> being positive and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g044460125.png" /> being a real number; and III. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g044460126.png" /> is a torus, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g044460127.png" /> is regular on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g044460128.png" />. Then 1) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g044460129.png" /> consists of a finite number of terminal, strip-like, annular, and dense domains; 2) each such domain is bounded by a finite number of trajectories together with points at which the latter meet; each boundary component of such a domain contains a point of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g044460130.png" />, except for boundary components of the circular or annular domain which may coincide with a boundary components of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g044460131.png" />; for a strip-like domain two boundary elements issuing from points of the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g044460132.png" /> subdivide the boundary into two parts, each one of which contains a point of the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g044460133.png" />; 3) each pole of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g044460134.png" /> of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g044460135.png" /> has a neighbourhood that can be covered by the internal closure of the union of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g044460136.png" /> terminal domains and a finite number (which may also be equal to zero) of strip-like domains; and 4) each pole of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g044460137.png" /> of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g044460138.png" /> has a neighbourhood that can be covered by the internal closure of the union of a finite number of strip-like domains, or has a neighbourhood contained in a circular domain. | + | The basic structure theorem is valid [[#References|[2]]]. Let $ R $ |
| + | be a compact oriented Riemann surface and let $ Q( z) d z ^ {2} $ |
| + | be a positive quadratic differential on $ R $, |
| + | while excluding the following possible cases and all configurations obtainable from such cases by way of a [[Conformal mapping|conformal mapping]]: I. $ R $ |
| + | is a $ z $- |
| + | sphere, $ Q ( z) d z ^ {2} = d z ^ {2} $; |
| + | II. $ R $ |
| + | is a $ z $- |
| + | sphere, $ Q( z) d z ^ {2} = K e ^ {i \alpha } d z / z ^ {2} $, |
| + | $ K $ |
| + | being positive and $ \alpha $ |
| + | being a real number; and III. $ R $ |
| + | is a torus, and $ Q( z) d z ^ {2} $ |
| + | is regular on $ R $. |
| + | Then 1) $ R \setminus \overline \Lambda \; $ |
| + | consists of a finite number of terminal, strip-like, annular, and dense domains; 2) each such domain is bounded by a finite number of trajectories together with points at which the latter meet; each boundary component of such a domain contains a point of $ C $, |
| + | except for boundary components of the circular or annular domain which may coincide with a boundary components of $ R $; |
| + | for a strip-like domain two boundary elements issuing from points of the set $ H $ |
| + | subdivide the boundary into two parts, each one of which contains a point of the set $ C $; |
| + | 3) each pole of $ Q( z) d z ^ {2} $ |
| + | of order $ m > 2 $ |
| + | has a neighbourhood that can be covered by the internal closure of the union of $ m - 2 $ |
| + | terminal domains and a finite number (which may also be equal to zero) of strip-like domains; and 4) each pole of $ Q( z) d z ^ {2} $ |
| + | of order $ m = 2 $ |
| + | has a neighbourhood that can be covered by the internal closure of the union of a finite number of strip-like domains, or has a neighbourhood contained in a circular domain. |
| | | |
− | The statement of the basic structure theorem of J.A. Jenkins [[#References|[1]]] in its original formulation immediately follows from this theorem: Under the conditions of the theorem the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g044460139.png" /> consists of a finite number of terminal, strip-like, circular, and annular domains. In a number of studies in the theory of univalent functions, main stress is laid on proving the fact that the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g044460140.png" /> is empty for the quadratic differential <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g044460141.png" /> under consideration. The search for conditions under which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g044460142.png" /> is empty is also of interest in its own right. The following three-pole theorem provides an example of a quadratic differential <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g044460143.png" /> on the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g044460144.png" />-sphere for which the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g044460145.png" /> is empty: If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g044460146.png" /> is the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g044460147.png" />-sphere and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g044460148.png" /> is a quadratic differential on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g044460149.png" /> with at most three different poles, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044460/g044460150.png" /> is empty. | + | The statement of the basic structure theorem of J.A. Jenkins [[#References|[1]]] in its original formulation immediately follows from this theorem: Under the conditions of the theorem the set $ R \setminus \overline \Phi \; $ |
| + | consists of a finite number of terminal, strip-like, circular, and annular domains. In a number of studies in the theory of univalent functions, main stress is laid on proving the fact that the set $ \widehat \Phi $ |
| + | is empty for the quadratic differential $ Q( z) d z ^ {2} $ |
| + | under consideration. The search for conditions under which $ \widehat \Phi $ |
| + | is empty is also of interest in its own right. The following three-pole theorem provides an example of a quadratic differential $ Q( z) d z ^ {2} $ |
| + | on the $ z $- |
| + | sphere for which the set $ \widehat \Phi $ |
| + | is empty: If $ R $ |
| + | is the $ z $- |
| + | sphere and $ Q( z) d z ^ {2} $ |
| + | is a quadratic differential on $ R $ |
| + | with at most three different poles, then $ \widehat \Phi $ |
| + | is empty. |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[1]</TD> <TD valign="top"> J.A. Jenkins, "Univalent functions and conformal mappings" , Springer (1958)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> J.A. Jenkins, "On the global structure of the trajectories of a positive quadratic differential" ''Illinois J. Math.'' , '''4''' : 3 (1960) pp. 405–412</TD></TR></table> | | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> J.A. Jenkins, "Univalent functions and conformal mappings" , Springer (1958)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> J.A. Jenkins, "On the global structure of the trajectories of a positive quadratic differential" ''Illinois J. Math.'' , '''4''' : 3 (1960) pp. 405–412</TD></TR></table> |
of a quadratic differential
A description of the behaviour as a whole of trajectories of a positive quadratic differential on a compact oriented Riemann surface (cf. Quadratic differential for the definition of trajectory in this setting). Let $ R $
be a compact oriented Riemann surface, let $ Q( z) d z ^ {2} $
be a positive quadratic differential on $ R $,
let $ C $
be the set of all zeros and simple poles of $ Q( z) d z ^ {2} $,
and let $ H $
be the set of poles of $ Q( z) d z ^ {2} $
of order $ \geq 2 $.
The trajectories of $ Q ( z) d z ^ {2} $
form a family $ F $
which has many of the properties of regular families of curves. This family of curves covers $ R $
except for the points of the set $ C \cup H $,
i.e. through every point of $ R \setminus ( C \cup H) $
passes a unique element of $ F $.
The behaviour of a trajectory of $ Q( z) d z ^ {2} $
in a neighbourhood of any point of $ R $
is described by the local structure of the trajectories of the quadratic differential (cf. Local structure of trajectories). In considering the global structure of the curves of $ F $
at the points of $ R \setminus H $,
an important role is played by the following unions of trajectories. Let $ \Phi $
be the union of all trajectories of $ Q( z) d z ^ {2} $
having limit end points at some point of $ C $;
let $ \Lambda $
be the subset of $ \Phi $
that is the union of all the trajectories of $ Q( z) d z ^ {2} $
which have one limit end point at a point of $ C $
and a second limit end point at a point of $ C \cup H $.
A set $ K $
on $ R $
is called an $ F $-
set with respect to $ Q( z) d z ^ {2} $
if each trajectory of $ Q( z) d z ^ {2} $
intersecting with $ K $
is completely contained in $ K $.
The internal closure of the set $ K $
is defined as the interior of the closure $ \overline{K}\; $
and is denoted by $ \widehat{K} $.
The internal closure of an $ F $-
set is also an $ F $-
set. The terminal domain $ E $
with respect to $ Q( z) d z ^ {2} $
is the largest connected open $ F $-
set on $ R $
with the following properties: 1) $ E $
contains no points of $ C \cup H $;
2) $ E $
is filled with trajectories of $ Q( z) d z ^ {2} $,
each one of which has a limit end point in each one of the two possible directions at a given point $ A \in H $;
and 3) $ E $
is conformally mapped by the function
$$
\zeta = \int\limits [ Q ( z)] ^ {1/2} dz
$$
onto the left or right half-plane of the $ \zeta $-
plane (depending on the choice of the branch of the root). It follows from the local structure of the trajectories of $ Q( z) d z ^ {2} $
that the point $ A $
should be a pole of the differential $ Q( z) d z ^ {2} $
of order at least three.
The strip-like domain $ S $
with respect to $ Q( z) d z ^ {2} $
is the largest connected open $ F $-
set on $ R $
with the following properties: 1) $ S $
contains no points of $ C \cup H $;
2) $ S $
is filled with the trajectories of $ Q( z) d z ^ {2} $,
each one of which has at one point $ A \in H $
a limit end point in one direction and at another point $ B \in H $(
which may coincide with $ A $)
a limit end point in the other direction; and 3) $ S $
is conformally mapped by the function
$$
\zeta = \int\limits [ Q ( z)] ^ {1/2} dz
$$
onto the strip $ a < \mathop{\rm Im} \zeta < b $,
where $ a $
and $ b $
are finite real numbers and $ a < b $.
The points $ A $
and $ B $
may be poles of $ Q( z) d z ^ {2} $
of order two or larger.
The circular domain $ {\mathcal C} $
with respect to $ Q( z) d z ^ {2} $
is the largest connected open $ F $-
set on $ R $
with the following properties: 1) $ {\mathcal C} $
contains a unique double pole $ A $
of $ Q( z) d z ^ {2} $;
2) $ {\mathcal C} \setminus A $
is filled with the trajectories of $ Q( z) d z ^ {2} $
each one of which is a closed Jordan curve which separates $ A $
from the boundary of $ {\mathcal C} $;
and 3) if a purely-imaginary constant $ c $
has been suitably chosen, the function
$$
w = \mathop{\rm exp} \left \{ c \int\limits [ Q ( z)] ^ {1/2} dz \right \} ,
$$
supplemented by the value zero at $ A $,
conformally maps $ {\mathcal C} $
onto a disc $ | w | < R $,
and $ A $
is mapped to $ w = 0 $.
The annular domain $ D $
with respect to $ Q( z) d z ^ {2} $
is the largest connected $ F $-
set on $ R $
with the following properties: 1) $ D $
does not contain any points of $ C \cup H $;
2) $ D $
is filled with trajectories of $ Q( z) d z ^ {2} $
each one of which is a closed Jordan curve; and 3) if a purely-imaginary constant $ c $
is suitably chosen, the function
$$
w = \mathop{\rm exp} \left \{ c \int\limits [ Q ( z)] ^ {1/2} dz \right \}
$$
conformally maps $ D $
onto a circular annulus $ r _ {1} < | w | \leq r _ {2} $,
$ 0 < r _ {1} < r _ {2} $.
The dense domain $ {\mathcal F} $
with respect to $ Q( z) d z ^ {2} $
is the largest connected $ F $-
set on $ R $
with the following properties: 1) $ {\mathcal F} $
does not contain any points of $ H $;
and 2) $ {\mathcal F} \setminus C $
is filled with trajectories of $ Q( z) d z ^ {2} $,
each one of which is everywhere-dense in $ {\mathcal F} $.
The basic structure theorem is valid [2]. Let $ R $
be a compact oriented Riemann surface and let $ Q( z) d z ^ {2} $
be a positive quadratic differential on $ R $,
while excluding the following possible cases and all configurations obtainable from such cases by way of a conformal mapping: I. $ R $
is a $ z $-
sphere, $ Q ( z) d z ^ {2} = d z ^ {2} $;
II. $ R $
is a $ z $-
sphere, $ Q( z) d z ^ {2} = K e ^ {i \alpha } d z / z ^ {2} $,
$ K $
being positive and $ \alpha $
being a real number; and III. $ R $
is a torus, and $ Q( z) d z ^ {2} $
is regular on $ R $.
Then 1) $ R \setminus \overline \Lambda \; $
consists of a finite number of terminal, strip-like, annular, and dense domains; 2) each such domain is bounded by a finite number of trajectories together with points at which the latter meet; each boundary component of such a domain contains a point of $ C $,
except for boundary components of the circular or annular domain which may coincide with a boundary components of $ R $;
for a strip-like domain two boundary elements issuing from points of the set $ H $
subdivide the boundary into two parts, each one of which contains a point of the set $ C $;
3) each pole of $ Q( z) d z ^ {2} $
of order $ m > 2 $
has a neighbourhood that can be covered by the internal closure of the union of $ m - 2 $
terminal domains and a finite number (which may also be equal to zero) of strip-like domains; and 4) each pole of $ Q( z) d z ^ {2} $
of order $ m = 2 $
has a neighbourhood that can be covered by the internal closure of the union of a finite number of strip-like domains, or has a neighbourhood contained in a circular domain.
The statement of the basic structure theorem of J.A. Jenkins [1] in its original formulation immediately follows from this theorem: Under the conditions of the theorem the set $ R \setminus \overline \Phi \; $
consists of a finite number of terminal, strip-like, circular, and annular domains. In a number of studies in the theory of univalent functions, main stress is laid on proving the fact that the set $ \widehat \Phi $
is empty for the quadratic differential $ Q( z) d z ^ {2} $
under consideration. The search for conditions under which $ \widehat \Phi $
is empty is also of interest in its own right. The following three-pole theorem provides an example of a quadratic differential $ Q( z) d z ^ {2} $
on the $ z $-
sphere for which the set $ \widehat \Phi $
is empty: If $ R $
is the $ z $-
sphere and $ Q( z) d z ^ {2} $
is a quadratic differential on $ R $
with at most three different poles, then $ \widehat \Phi $
is empty.
References
[1] | J.A. Jenkins, "Univalent functions and conformal mappings" , Springer (1958) |
[2] | J.A. Jenkins, "On the global structure of the trajectories of a positive quadratic differential" Illinois J. Math. , 4 : 3 (1960) pp. 405–412 |