Namespaces
Variants
Actions

Difference between revisions of "Paraboloidal coordinates"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
Numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071290/p0712901.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071290/p0712902.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071290/p0712903.png" /> related to the rectangular Cartesian coordinates <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071290/p0712904.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071290/p0712905.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071290/p0712906.png" /> by the formulas
+
<!--
 +
p0712901.png
 +
$#A+1 = 28 n = 0
 +
$#C+1 = 28 : ~/encyclopedia/old_files/data/P071/P.0701290 Paraboloidal coordinates
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071290/p0712907.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071290/p0712908.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071290/p0712909.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071290/p07129010.png" />. The coordinate surfaces are two systems of paraboloids of revolution with oppositely-directed axes (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071290/p07129011.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071290/p07129012.png" />) and half-planes (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071290/p07129013.png" />). The system of paraboloidal coordinates is orthogonal.
+
Numbers  $  u $,
 +
$  v $
 +
and  $  w $
 +
related to the rectangular Cartesian coordinates  $  x $,
 +
$  y $
 +
and  $  z $
 +
by the formulas
 +
 
 +
$$
 +
= 2 uw  \cos  v,\ \
 +
= 2uw  \sin  v,\ \
 +
= u  ^ {2} - w  ^ {2} ,
 +
$$
 +
 
 +
where  $  0 \leq  u < \infty $,
 +
0 \leq  v < 2 \pi $,  
 +
$  0 \leq  w < \infty $.  
 +
The coordinate surfaces are two systems of paraboloids of revolution with oppositely-directed axes ( $  u = \textrm{ const } $
 +
and $  w = \textrm{ const } $)  
 +
and half-planes ( $  v = \textrm{ const } $).  
 +
The system of paraboloidal coordinates is orthogonal.
  
 
The Lamé coefficients (or scale factors) are
 
The Lamé coefficients (or scale factors) are
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071290/p07129014.png" /></td> </tr></table>
+
$$
 +
L _ {u}  = L _ {w}  = 2 \sqrt {u  ^ {2} + w  ^ {2} } ,\ \
 +
L _ {v}  = 2uw.
 +
$$
  
 
The element of surface area is
 
The element of surface area is
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071290/p07129015.png" /></td> </tr></table>
+
$$
 +
d \sigma =
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071290/p07129016.png" /></td> </tr></table>
+
$$
 +
= \
 +
4 \sqrt {( u  ^ {2} + w  ^ {2} ) u  ^ {2} w  ^ {2} ( du  ^ {2}
 +
+ dw  ^ {2} )  dv  ^ {2} + ( u  ^ {2} + w  ^ {2} )( du  dw)  ^ {2} } .
 +
$$
  
 
The volume element is
 
The volume element is
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071290/p07129017.png" /></td> </tr></table>
+
$$
 +
dV  = 8( u  ^ {2} + w  ^ {2} ) uw  du  dv  dw.
 +
$$
  
 
The fundamental operations of vector analysis are
 
The fundamental operations of vector analysis are
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071290/p07129018.png" /></td> </tr></table>
+
$$
 +
\mathop{\rm grad} _ {u}  \phi  = \
 +
 
 +
\frac{1}{2 \sqrt {u  ^ {2} + w  ^ {2} } }
 +
 +
\frac{\partial  \phi }{\partial  u }
 +
,\ \
 +
\mathop{\rm grad} _ {v}  \phi  = \
 +
 
 +
\frac{1}{2uw}
 +
 +
\frac{\partial  \phi }{\partial  v }
 +
,
 +
$$
 +
 
 +
$$
 +
\mathop{\rm grad} _ {w}  \phi  =
 +
\frac{1}{2 \sqrt {u  ^ {2}
 +
+ w  ^ {2} } }
 +
 +
\frac{\partial  \phi }{\partial  w }
 +
,
 +
$$
 +
 
 +
$$
 +
\mathop{\rm div}  \mathbf a  =
 +
\frac{1}{2uw \sqrt {( u  ^ {2} + w  ^ {2} )  ^ {3} } }
 +
\times
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071290/p07129019.png" /></td> </tr></table>
+
$$
 +
\times
 +
[ w \mathbf a _ {u} ( 2u  ^ {2} + w  ^ {2} ) + u \mathbf a _ {w} ( u  ^ {2} + 2w  ^ {2} )] +
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071290/p07129020.png" /></td> </tr></table>
+
$$
 +
+
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071290/p07129021.png" /></td> </tr></table>
+
\frac{1}{2 \sqrt {u  ^ {2} + w  ^ {2} } }
 +
\left (
 +
\frac{\partial  \mathbf a _ {u} }{\partial
 +
u }
 +
+
 +
\frac{\partial  \mathbf a _ {w} }{\partial  w }
 +
\right )
 +
+
 +
\frac{1}{2uw}
 +
 +
\frac{\partial  \mathbf a _ {v} }{\partial  v }
 +
;
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071290/p07129022.png" /></td> </tr></table>
+
$$
 +
\mathop{\rm rot} _ {u}  \mathbf a  =
 +
\frac{1}{2uw}
 +
 +
\frac{\partial  \mathbf a _ {w} }{\partial  v }
 +
-  
 +
\frac{1}{2w \sqrt {u  ^ {2} + w  ^ {2} } }
 +
\left (
 +
\mathbf a _ {v} + w
 +
\frac{\partial  \mathbf a _ {v} }{\partial  w }
 +
\right ) ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071290/p07129023.png" /></td> </tr></table>
+
$$
 +
\mathop{\rm rot} _ {v}  \mathbf a  =
 +
\frac{1}{2 \sqrt {( u  ^ {2} + w  ^ {2} )  ^ {3} } }
 +
( w \mathbf a _ {u} - \mathbf a _ {w} ) +
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071290/p07129024.png" /></td> </tr></table>
+
$$
 +
+
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071290/p07129025.png" /></td> </tr></table>
+
\frac{1}{2 \sqrt {u  ^ {2} + w  ^ {2} } }
 +
\left (
 +
\frac{\partial  \mathbf a _ {u}  }{\partial  w }
 +
-  
 +
\frac{\partial  \mathbf a _ {w} }{\partial  u }
 +
\right ) ;
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071290/p07129026.png" /></td> </tr></table>
+
$$
 +
\mathop{\rm rot} _ {w}  \mathbf a  =
 +
\frac{1}{2w( u  ^ {2} + w  ^ {2} ) }
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071290/p07129027.png" /></td> </tr></table>
+
\left ( \mathbf a _ {v} + u
 +
\frac{\partial  \mathbf a _ {v} }{\partial
 +
u }
 +
\right ) -  
 +
\frac{1}{2uv}
 +
 +
\frac{\partial  \mathbf a _ {u} }{\partial  v }
 +
;
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071290/p07129028.png" /></td> </tr></table>
+
$$
 +
\Delta \phi  =
 +
\frac{1}{4( u  ^ {2} + w  ^ {2} ) }
 +
\left
 +
[
 +
\frac{\partial  ^ {2} \phi }{\partial  u  ^ {2} }
  
 +
+
 +
\frac{1}{u}
 +
 +
\frac{\partial  \phi }{\partial  u }
 +
\right . +
 +
$$
  
 +
$$
 +
+ \left .
 +
\left (
 +
\frac{1}{u  ^ {2} }
 +
+
 +
\frac{1}{w  ^ {2}
 +
}
 +
\right )
 +
\frac{\partial  ^ {2} \phi }{\partial  v  ^ {2} }
 +
+
 +
\frac{\partial
 +
^ {2} \phi }{\partial  w  ^ {2} }
 +
+
 +
\frac{1}{w}
 +
 +
\frac{\partial  \phi }{\partial  w }
 +
\right ] .
 +
$$
  
 
====Comments====
 
====Comments====

Latest revision as of 08:05, 6 June 2020


Numbers $ u $, $ v $ and $ w $ related to the rectangular Cartesian coordinates $ x $, $ y $ and $ z $ by the formulas

$$ x = 2 uw \cos v,\ \ y = 2uw \sin v,\ \ z = u ^ {2} - w ^ {2} , $$

where $ 0 \leq u < \infty $, $ 0 \leq v < 2 \pi $, $ 0 \leq w < \infty $. The coordinate surfaces are two systems of paraboloids of revolution with oppositely-directed axes ( $ u = \textrm{ const } $ and $ w = \textrm{ const } $) and half-planes ( $ v = \textrm{ const } $). The system of paraboloidal coordinates is orthogonal.

The Lamé coefficients (or scale factors) are

$$ L _ {u} = L _ {w} = 2 \sqrt {u ^ {2} + w ^ {2} } ,\ \ L _ {v} = 2uw. $$

The element of surface area is

$$ d \sigma = $$

$$ = \ 4 \sqrt {( u ^ {2} + w ^ {2} ) u ^ {2} w ^ {2} ( du ^ {2} + dw ^ {2} ) dv ^ {2} + ( u ^ {2} + w ^ {2} )( du dw) ^ {2} } . $$

The volume element is

$$ dV = 8( u ^ {2} + w ^ {2} ) uw du dv dw. $$

The fundamental operations of vector analysis are

$$ \mathop{\rm grad} _ {u} \phi = \ \frac{1}{2 \sqrt {u ^ {2} + w ^ {2} } } \frac{\partial \phi }{\partial u } ,\ \ \mathop{\rm grad} _ {v} \phi = \ \frac{1}{2uw} \frac{\partial \phi }{\partial v } , $$

$$ \mathop{\rm grad} _ {w} \phi = \frac{1}{2 \sqrt {u ^ {2} + w ^ {2} } } \frac{\partial \phi }{\partial w } , $$

$$ \mathop{\rm div} \mathbf a = \frac{1}{2uw \sqrt {( u ^ {2} + w ^ {2} ) ^ {3} } } \times $$

$$ \times [ w \mathbf a _ {u} ( 2u ^ {2} + w ^ {2} ) + u \mathbf a _ {w} ( u ^ {2} + 2w ^ {2} )] + $$

$$ + \frac{1}{2 \sqrt {u ^ {2} + w ^ {2} } } \left ( \frac{\partial \mathbf a _ {u} }{\partial u } + \frac{\partial \mathbf a _ {w} }{\partial w } \right ) + \frac{1}{2uw} \frac{\partial \mathbf a _ {v} }{\partial v } ; $$

$$ \mathop{\rm rot} _ {u} \mathbf a = \frac{1}{2uw} \frac{\partial \mathbf a _ {w} }{\partial v } - \frac{1}{2w \sqrt {u ^ {2} + w ^ {2} } } \left ( \mathbf a _ {v} + w \frac{\partial \mathbf a _ {v} }{\partial w } \right ) , $$

$$ \mathop{\rm rot} _ {v} \mathbf a = \frac{1}{2 \sqrt {( u ^ {2} + w ^ {2} ) ^ {3} } } ( w \mathbf a _ {u} - \mathbf a _ {w} ) + $$

$$ + \frac{1}{2 \sqrt {u ^ {2} + w ^ {2} } } \left ( \frac{\partial \mathbf a _ {u} }{\partial w } - \frac{\partial \mathbf a _ {w} }{\partial u } \right ) ; $$

$$ \mathop{\rm rot} _ {w} \mathbf a = \frac{1}{2w( u ^ {2} + w ^ {2} ) } \left ( \mathbf a _ {v} + u \frac{\partial \mathbf a _ {v} }{\partial u } \right ) - \frac{1}{2uv} \frac{\partial \mathbf a _ {u} }{\partial v } ; $$

$$ \Delta \phi = \frac{1}{4( u ^ {2} + w ^ {2} ) } \left [ \frac{\partial ^ {2} \phi }{\partial u ^ {2} } + \frac{1}{u} \frac{\partial \phi }{\partial u } \right . + $$

$$ + \left . \left ( \frac{1}{u ^ {2} } + \frac{1}{w ^ {2} } \right ) \frac{\partial ^ {2} \phi }{\partial v ^ {2} } + \frac{\partial ^ {2} \phi }{\partial w ^ {2} } + \frac{1}{w} \frac{\partial \phi }{\partial w } \right ] . $$

Comments

These coordinates are also called rotation parabolic coordinates.

References

[a1] R. Sauer (ed.) I. Szabó (ed.) , Mathematische Hilfsmittel des Ingenieurs , 1 , Springer (1967) pp. 96
How to Cite This Entry:
Paraboloidal coordinates. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Paraboloidal_coordinates&oldid=11852
This article was adapted from an original article by D.D. Sokolov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article