Difference between revisions of "Multiplicity of a weight"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | m0655101.png | ||
+ | $#A+1 = 62 n = 0 | ||
+ | $#C+1 = 62 : ~/encyclopedia/old_files/data/M065/M.0605510 Multiplicity of a weight | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | '' $ M $ | |
+ | of a representation $ \rho $ | ||
+ | of a Lie algebra $ \mathfrak t $ | ||
+ | in a finite-dimensional vector space $ V $'' | ||
− | + | The dimension $ n _ {M} $ | |
+ | of the weight subspace $ V _ {M} \subset V $ | ||
+ | corresponding to the weight $ M $( | ||
+ | see [[Weight of a representation of a Lie algebra|Weight of a representation of a Lie algebra]]). | ||
− | + | Let $ \mathfrak t $ | |
+ | be a [[Cartan subalgebra|Cartan subalgebra]] of a semi-simple Lie algebra $ \mathfrak g $ | ||
+ | over an algebraically closed field of characteristic zero, and let $ \rho $ | ||
+ | be the restriction to $ \mathfrak t $ | ||
+ | of a finite-dimensional representation $ \sigma $ | ||
+ | of the algebra $ \mathfrak g $. | ||
+ | In this case the space $ V $ | ||
+ | is the direct sum of the weight subspaces of $ \mathfrak t $ | ||
+ | corresponding to the different weights. These weights and their multiplicities are often called the weights and the multiplicities of the representation $ \sigma $ | ||
+ | of the algebra $ \mathfrak g $. | ||
− | + | Suppose that $ \sigma $ | |
+ | is an irreducible representation and let $ \Lambda $ | ||
+ | be its highest weight (see [[Cartan theorem|Cartan theorem]] on the highest weight vector). Then $ n _ \Lambda = 1 $. | ||
+ | Various devices are available for computing the multiplicities of weights other than the highest weight. Two of these are classical results in representation theory: Freudenthal's formula and Kostant's formula. | ||
− | + | 1) Freudenthal's formula (see , [[#References|[1]]]). Let $ ( , ) $ | |
+ | be the natural scalar product on the space $ \mathfrak t ^ {*} $ | ||
+ | adjoint to $ \mathfrak t $, | ||
+ | induced by the [[Killing form|Killing form]] on $ \mathfrak t $; | ||
+ | let $ R $ | ||
+ | be the [[Root system|root system]] of the algebra $ \mathfrak g $ | ||
+ | relative to $ \mathfrak t $ | ||
+ | and let $ > $ | ||
+ | be a partial order relation on $ \mathfrak t ^ {*} $ | ||
+ | determined by some fixed system of simple roots $ \alpha _ {1} \dots \alpha _ {r} $ | ||
+ | in $ R $. | ||
+ | Then | ||
− | + | $$ | |
+ | (( \Lambda + \delta , \Lambda + \delta ) - | ||
+ | ( M + \delta , M + \delta ) ) | ||
+ | n _ {M\ } = | ||
+ | $$ | ||
− | 2 | + | $$ |
+ | = \ | ||
+ | 2 \sum _ {\begin{array}{c} | ||
+ | \alpha \in R \\ | ||
+ | \alpha > 0 | ||
+ | \end{array} | ||
+ | } \sum _ {k = 1 } ^ \infty n _ {M + k \alpha } ( M + k \alpha , \alpha ), | ||
+ | $$ | ||
− | + | where $ \delta = \sum _ {\alpha \in R, \alpha > 0 } \alpha /2 $ | |
+ | and by definition $ n _ {N} = 0 $ | ||
+ | if $ N $ | ||
+ | is not a weight of the representation $ \sigma $. | ||
+ | For any weight $ M \neq \Lambda $, | ||
+ | the coefficient of $ n _ {M} $ | ||
+ | on the left of the formula is different from zero. This formula is essentially a recurrence formula: it enables one to express $ n _ {M} $ | ||
+ | in terms of $ n _ {N} $ | ||
+ | for $ N > M $. | ||
+ | Since it is known that $ n _ \Lambda = 1 $, | ||
+ | Freudenthal's formula yields an effective method for the computation of the multiplicities $ n _ {M } $. | ||
− | + | 2) Kostant's formula (see [[#References|[5]]], [[#References|[1]]]). Let $ \Gamma = \{ {M \in \mathfrak t ^ {*} } : {2 ( M , \alpha _ {i} )/( \alpha _ {i} , \alpha _ {i} ) \in \mathbf Z \textrm{ for all } i = 1 \dots r } \} $. | |
+ | This set $ \Gamma $ | ||
+ | is a multiplicative subgroup in $ \mathfrak t ^ {*} $ | ||
+ | which is invariant under the [[Weyl group|Weyl group]] $ W $, | ||
+ | which acts on $ \mathfrak t ^ {*} $ | ||
+ | in a natural way. The element $ \delta $— | ||
+ | and indeed all weights of the representation $ \sigma $— | ||
+ | are members of $ \Gamma $. | ||
+ | Suppose that for each $ M \in \Gamma $ | ||
+ | the number $ P ( M ) $ | ||
+ | is the number of solutions $ \{ {k _ \alpha } : {\alpha \in R, \alpha > 0 } \} $ | ||
+ | of the equation | ||
− | + | $$ | |
+ | M = \ | ||
+ | \sum _ {\begin{array}{c} | ||
+ | \alpha \in R \\ | ||
+ | \alpha > 0 | ||
+ | \end{array} | ||
+ | } | ||
+ | k _ \alpha \alpha , | ||
+ | $$ | ||
+ | |||
+ | where $ k _ \alpha \in \mathbf Z $, | ||
+ | $ k _ \alpha > 0 $ | ||
+ | for all $ \alpha $. | ||
+ | The function $ P ( M ) $ | ||
+ | on $ \Gamma $ | ||
+ | is known as the partition function. Then | ||
+ | |||
+ | $$ | ||
+ | n _ {M} = \ | ||
+ | \sum _ {S \in W } | ||
+ | ( \mathop{\rm det} S) P ( S ( \Lambda + \delta ) - | ||
+ | ( M + \delta )). | ||
+ | $$ | ||
Practical application of the above formulas involves cumbersome computations. For semi-simple algebras of rank 2, there are more convenient geometrical rules for evaluating the multiplicity of a weight (see [[#References|[2]]]). | Practical application of the above formulas involves cumbersome computations. For semi-simple algebras of rank 2, there are more convenient geometrical rules for evaluating the multiplicity of a weight (see [[#References|[2]]]). | ||
Line 27: | Line 118: | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> N. Jacobson, "Lie algebras" , Interscience (1962) ((also: Dover, reprint, 1979))</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> D.P. Zhelobenko, "Lectures on the theory of Lie groups" , Dubna (1965) (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> D.P. Zhelobenko, "Compact Lie groups and their representations" , Amer. Math. Soc. (1973) (Translated from Russian)</TD></TR><TR><TD valign="top">[4a]</TD> <TD valign="top"> H. Freudenthal, "Zur Berechnung der Charaktere der halbeinfacher Liescher Gruppen I" ''Indag. Math.'' , '''16''' (1954) pp. 369–376</TD></TR><TR><TD valign="top">[4b]</TD> <TD valign="top"> H. Freudenthal, "Zur Berechnung der Charaktere der halbeinfacher Liescher Gruppen II" ''Indag. Math.'' , '''16''' (1954) pp. 487–491</TD></TR><TR><TD valign="top">[4c]</TD> <TD valign="top"> H. Freudenthal, "Zur Berechnung der Charaktere der halbeinfacher Liescher Gruppen III" ''Indag. Math.'' , '''18''' (1956) pp. 511–514</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> B. Kostant, "A formula for the multiplicity of a weight" ''Trans. Amer. Math. Soc.'' , '''93''' (1959) pp. 53–73</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> N. Jacobson, "Lie algebras" , Interscience (1962) ((also: Dover, reprint, 1979))</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> D.P. Zhelobenko, "Lectures on the theory of Lie groups" , Dubna (1965) (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> D.P. Zhelobenko, "Compact Lie groups and their representations" , Amer. Math. Soc. (1973) (Translated from Russian)</TD></TR><TR><TD valign="top">[4a]</TD> <TD valign="top"> H. Freudenthal, "Zur Berechnung der Charaktere der halbeinfacher Liescher Gruppen I" ''Indag. Math.'' , '''16''' (1954) pp. 369–376</TD></TR><TR><TD valign="top">[4b]</TD> <TD valign="top"> H. Freudenthal, "Zur Berechnung der Charaktere der halbeinfacher Liescher Gruppen II" ''Indag. Math.'' , '''16''' (1954) pp. 487–491</TD></TR><TR><TD valign="top">[4c]</TD> <TD valign="top"> H. Freudenthal, "Zur Berechnung der Charaktere der halbeinfacher Liescher Gruppen III" ''Indag. Math.'' , '''18''' (1956) pp. 511–514</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> B. Kostant, "A formula for the multiplicity of a weight" ''Trans. Amer. Math. Soc.'' , '''93''' (1959) pp. 53–73</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== |
Latest revision as of 08:02, 6 June 2020
$ M $
of a representation $ \rho $
of a Lie algebra $ \mathfrak t $
in a finite-dimensional vector space $ V $
The dimension $ n _ {M} $ of the weight subspace $ V _ {M} \subset V $ corresponding to the weight $ M $( see Weight of a representation of a Lie algebra).
Let $ \mathfrak t $ be a Cartan subalgebra of a semi-simple Lie algebra $ \mathfrak g $ over an algebraically closed field of characteristic zero, and let $ \rho $ be the restriction to $ \mathfrak t $ of a finite-dimensional representation $ \sigma $ of the algebra $ \mathfrak g $. In this case the space $ V $ is the direct sum of the weight subspaces of $ \mathfrak t $ corresponding to the different weights. These weights and their multiplicities are often called the weights and the multiplicities of the representation $ \sigma $ of the algebra $ \mathfrak g $.
Suppose that $ \sigma $ is an irreducible representation and let $ \Lambda $ be its highest weight (see Cartan theorem on the highest weight vector). Then $ n _ \Lambda = 1 $. Various devices are available for computing the multiplicities of weights other than the highest weight. Two of these are classical results in representation theory: Freudenthal's formula and Kostant's formula.
1) Freudenthal's formula (see , [1]). Let $ ( , ) $ be the natural scalar product on the space $ \mathfrak t ^ {*} $ adjoint to $ \mathfrak t $, induced by the Killing form on $ \mathfrak t $; let $ R $ be the root system of the algebra $ \mathfrak g $ relative to $ \mathfrak t $ and let $ > $ be a partial order relation on $ \mathfrak t ^ {*} $ determined by some fixed system of simple roots $ \alpha _ {1} \dots \alpha _ {r} $ in $ R $. Then
$$ (( \Lambda + \delta , \Lambda + \delta ) - ( M + \delta , M + \delta ) ) n _ {M\ } = $$
$$ = \ 2 \sum _ {\begin{array}{c} \alpha \in R \\ \alpha > 0 \end{array} } \sum _ {k = 1 } ^ \infty n _ {M + k \alpha } ( M + k \alpha , \alpha ), $$
where $ \delta = \sum _ {\alpha \in R, \alpha > 0 } \alpha /2 $ and by definition $ n _ {N} = 0 $ if $ N $ is not a weight of the representation $ \sigma $. For any weight $ M \neq \Lambda $, the coefficient of $ n _ {M} $ on the left of the formula is different from zero. This formula is essentially a recurrence formula: it enables one to express $ n _ {M} $ in terms of $ n _ {N} $ for $ N > M $. Since it is known that $ n _ \Lambda = 1 $, Freudenthal's formula yields an effective method for the computation of the multiplicities $ n _ {M } $.
2) Kostant's formula (see [5], [1]). Let $ \Gamma = \{ {M \in \mathfrak t ^ {*} } : {2 ( M , \alpha _ {i} )/( \alpha _ {i} , \alpha _ {i} ) \in \mathbf Z \textrm{ for all } i = 1 \dots r } \} $. This set $ \Gamma $ is a multiplicative subgroup in $ \mathfrak t ^ {*} $ which is invariant under the Weyl group $ W $, which acts on $ \mathfrak t ^ {*} $ in a natural way. The element $ \delta $— and indeed all weights of the representation $ \sigma $— are members of $ \Gamma $. Suppose that for each $ M \in \Gamma $ the number $ P ( M ) $ is the number of solutions $ \{ {k _ \alpha } : {\alpha \in R, \alpha > 0 } \} $ of the equation
$$ M = \ \sum _ {\begin{array}{c} \alpha \in R \\ \alpha > 0 \end{array} } k _ \alpha \alpha , $$
where $ k _ \alpha \in \mathbf Z $, $ k _ \alpha > 0 $ for all $ \alpha $. The function $ P ( M ) $ on $ \Gamma $ is known as the partition function. Then
$$ n _ {M} = \ \sum _ {S \in W } ( \mathop{\rm det} S) P ( S ( \Lambda + \delta ) - ( M + \delta )). $$
Practical application of the above formulas involves cumbersome computations. For semi-simple algebras of rank 2, there are more convenient geometrical rules for evaluating the multiplicity of a weight (see [2]).
References
[1] | N. Jacobson, "Lie algebras" , Interscience (1962) ((also: Dover, reprint, 1979)) |
[2] | D.P. Zhelobenko, "Lectures on the theory of Lie groups" , Dubna (1965) (In Russian) |
[3] | D.P. Zhelobenko, "Compact Lie groups and their representations" , Amer. Math. Soc. (1973) (Translated from Russian) |
[4a] | H. Freudenthal, "Zur Berechnung der Charaktere der halbeinfacher Liescher Gruppen I" Indag. Math. , 16 (1954) pp. 369–376 |
[4b] | H. Freudenthal, "Zur Berechnung der Charaktere der halbeinfacher Liescher Gruppen II" Indag. Math. , 16 (1954) pp. 487–491 |
[4c] | H. Freudenthal, "Zur Berechnung der Charaktere der halbeinfacher Liescher Gruppen III" Indag. Math. , 18 (1956) pp. 511–514 |
[5] | B. Kostant, "A formula for the multiplicity of a weight" Trans. Amer. Math. Soc. , 93 (1959) pp. 53–73 |
Comments
There is a faster algorithm for computing the full set of weights and multiplicities, due to M. Demazure [a3].
References
[a1] | H. Freudenthal, H. de Vries, "Linear Lie groups" , Acad. Press (1969) |
[a2] | J.E. Humphreys, "Introduction to Lie algebras and representation theory" , Springer (1972) pp. §5.4 |
[a3] | M. Demazure, "Une nouvelle formule des charactères" Bull. Sci. Math. (2) , 98 (1974) pp. 163–172 |
Multiplicity of a weight. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Multiplicity_of_a_weight&oldid=11685