Difference between revisions of "Euler identity"
|  (Importing text file) | m (better) | ||
| (3 intermediate revisions by the same user not shown) | |||
| Line 1: | Line 1: | ||
| The relation | The relation | ||
| − | + | $$ | |
| − | + | \sum_{n=1}^\infty \frac{1}{n^s} = \prod_p \left({1 - \frac{1}{p^s} }\right)^{-1} | |
| − | + | $$ | |
| − | where  | + | where $s>1$ is an arbitrary real number and the product extends over all prime numbers $p$. The Euler identity also holds for all complex numbers $s = \sigma + it$ with $\sigma > 1$. | 
| The Euler identity can be generalized in the form | The Euler identity can be generalized in the form | ||
| − | + | $$ | |
| − | + | \sum_{n=1}^\infty f(n) = \prod_p \left({1 - \frac{1}{f(p)} }\right)^{-1} | |
| − | + | $$ | |
| − | which holds for every totally | + | which holds for every [[totally multiplicative function|totally multiplicative arithmetic function]] $f(n)$ for which the series $\sum_{n=1}^\infty f(n) $ is absolutely convergent. | 
| Another generalization of the Euler identity is the formula | Another generalization of the Euler identity is the formula | ||
| − | + | $$ | |
| − | + | \sum_{n=1}^\infty \frac{a_n}{n^s} = \prod_p \left({1 - a_p p^{-s} + p^{2k-1-2s} }\right)^{-1} | |
| − | + | $$ | |
| for the [[Dirichlet series|Dirichlet series]] | for the [[Dirichlet series|Dirichlet series]] | ||
| − | + | $$ | |
| − | + | F(s) = \sum_{n=1}^\infty \frac{a_n}{n^s}\ ,\ \ \ s = \sigma + it\ ,\ \ \ \sigma > 1 | |
| − | + | $$ | |
| corresponding to the modular functions | corresponding to the modular functions | ||
| − | + | $$ | |
| − | + | f(z) = \sum_{n=1}^\infty a_n e^{2\pi i n z} | |
| − | + | $$ | |
| − | of weight  | + | of weight $2k$, which are the eigen functions of the Hecke operator. | 
| ====References==== | ====References==== | ||
| − | <table><TR><TD valign="top">[1]</TD> <TD valign="top">  K. Chandrasekharan,   "Introduction to analytic number theory" , Springer  (1968)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  S. Lang,   "Introduction to modular forms" , Springer  (1976)</TD></TR></table> | + | <table> | 
| + | <TR><TD valign="top">[1]</TD> <TD valign="top">  K. Chandrasekharan,   "Introduction to analytic number theory" , Springer  (1968)</TD></TR> | ||
| + | <TR><TD valign="top">[2]</TD> <TD valign="top">  S. Lang,   "Introduction to modular forms" , Springer  (1976)</TD></TR> | ||
| + | </table> | ||
| Line 32: | Line 35: | ||
| ====Comments==== | ====Comments==== | ||
| The product | The product | ||
| − | + | $$ | |
| − | + | \prod_p \left({1 - \frac{1}{p^s} }\right)^{-1} | |
| − | + | $$ | |
| is called the Euler product. For Hecke operators in connection with modular forms see [[Modular form|Modular form]]. For totally-multiplicative arithmetic functions cf. [[Multiplicative arithmetic function|Multiplicative arithmetic function]]. | is called the Euler product. For Hecke operators in connection with modular forms see [[Modular form|Modular form]]. For totally-multiplicative arithmetic functions cf. [[Multiplicative arithmetic function|Multiplicative arithmetic function]]. | ||
| ====References==== | ====References==== | ||
| − | <table><TR><TD valign="top">[a1]</TD> <TD valign="top">  E.C. Titchmarsh,   "The theory of the Riemann zeta-function" , Clarendon Press  (1951)</TD></TR></table> | + | <table> | 
| + | <TR><TD valign="top">[a1]</TD> <TD valign="top">  E.C. Titchmarsh,   "The theory of the Riemann zeta-function" , Clarendon Press  (1951)</TD></TR> | ||
| + | </table> | ||
Latest revision as of 19:13, 14 December 2015
The relation $$ \sum_{n=1}^\infty \frac{1}{n^s} = \prod_p \left({1 - \frac{1}{p^s} }\right)^{-1} $$ where $s>1$ is an arbitrary real number and the product extends over all prime numbers $p$. The Euler identity also holds for all complex numbers $s = \sigma + it$ with $\sigma > 1$.
The Euler identity can be generalized in the form $$ \sum_{n=1}^\infty f(n) = \prod_p \left({1 - \frac{1}{f(p)} }\right)^{-1} $$ which holds for every totally multiplicative arithmetic function $f(n)$ for which the series $\sum_{n=1}^\infty f(n) $ is absolutely convergent.
Another generalization of the Euler identity is the formula $$ \sum_{n=1}^\infty \frac{a_n}{n^s} = \prod_p \left({1 - a_p p^{-s} + p^{2k-1-2s} }\right)^{-1} $$ for the Dirichlet series $$ F(s) = \sum_{n=1}^\infty \frac{a_n}{n^s}\ ,\ \ \ s = \sigma + it\ ,\ \ \ \sigma > 1 $$ corresponding to the modular functions $$ f(z) = \sum_{n=1}^\infty a_n e^{2\pi i n z} $$ of weight $2k$, which are the eigen functions of the Hecke operator.
References
| [1] | K. Chandrasekharan, "Introduction to analytic number theory" , Springer (1968) | 
| [2] | S. Lang, "Introduction to modular forms" , Springer (1976) | 
Comments
The product $$ \prod_p \left({1 - \frac{1}{p^s} }\right)^{-1} $$ is called the Euler product. For Hecke operators in connection with modular forms see Modular form. For totally-multiplicative arithmetic functions cf. Multiplicative arithmetic function.
References
| [a1] | E.C. Titchmarsh, "The theory of the Riemann zeta-function" , Clarendon Press (1951) | 
Euler identity. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Euler_identity&oldid=11612