|
|
(One intermediate revision by the same user not shown) |
Line 1: |
Line 1: |
− | The derivative at zero of a semi-group of linear operators (cf. [[Semi-group of operators|Semi-group of operators]]) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g0439201.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g0439202.png" />, acting on a complex Banach space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g0439203.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g0439204.png" /> is continuous in the operator norm, then it has the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g0439205.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g0439206.png" /> is a bounded operator,
| + | <!-- |
| + | g0439201.png |
| + | $#A+1 = 70 n = 0 |
| + | $#C+1 = 70 : ~/encyclopedia/old_files/data/G043/G.0403920 Generating operator of a semi\AAhgroup |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g0439207.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g0439208.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g0439209.png" /> is the generating operator of this semi-group. Conversely, if the limit on the left-hand side exists, for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392010.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392011.png" />.
| + | The derivative at zero of a semi-group of linear operators (cf. [[Semi-group of operators|Semi-group of operators]]) $ T ( t) $, |
| + | $ 0 < t < \infty $, |
| + | acting on a complex Banach space $ X $. |
| + | If $ T ( t) $ |
| + | is continuous in the operator norm, then it has the form $ T ( t) = e ^ {t A _ {0} } $, |
| + | where $ A _ {0} $ |
| + | is a bounded operator, |
| | | |
− | A more complicated situation arises when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392012.png" /> is only a [[Strongly-continuous semi-group|strongly-continuous semi-group]]. In this case the limit (1) does not necessarily exist for every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392013.png" />. The operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392014.png" />, defined on the linear set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392015.png" /> of all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392016.png" /> for which the limit exists, is linear and unbounded, and is called the infinitesimal operator. In particular, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392017.png" /> is defined on all elements of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392018.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392019.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392020.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392021.png" /> denotes the closure of the union of the range of values of all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392022.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392023.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392024.png" /> is dense in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392025.png" /> and, moreover, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392026.png" /> is dense in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392027.png" />. The values of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392028.png" /> also lie in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392029.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392030.png" /> is an unbounded operator, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392031.png" /> is a set of the first category in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392032.png" />.
| + | $$ \tag{1 } |
| + | \lim\limits _ {t \rightarrow 0 } |
| + | \frac{T ( t) x - x }{t} |
| + | = A _ {0} x |
| + | $$ |
| | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392033.png" /> does not contain elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392034.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392035.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392036.png" /> has a closure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392037.png" />, which is also called the generating operator of the semi-group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392038.png" />. In this case, for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392039.png" />,
| + | for any $ x \in X $, |
| + | and $ A _ {0} $ |
| + | is the generating operator of this semi-group. Conversely, if the limit on the left-hand side exists, for all $ x \in X $, |
| + | then $ T ( t) = e ^ {t A _ {0} } $. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392040.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
| + | A more complicated situation arises when $ T ( t) $ |
| + | is only a [[Strongly-continuous semi-group|strongly-continuous semi-group]]. In this case the limit (1) does not necessarily exist for every $ x $. |
| + | The operator $ A _ {0} $, |
| + | defined on the linear set $ D ( A _ {0} ) $ |
| + | of all $ x $ |
| + | for which the limit exists, is linear and unbounded, and is called the infinitesimal operator. In particular, $ A _ {0} $ |
| + | is defined on all elements of the form $ \int _ \alpha ^ \beta T ( t) y dt $, |
| + | $ \alpha , \beta > 0 $, |
| + | $ y \in X $. |
| + | If $ X _ {0} $ |
| + | denotes the closure of the union of the range of values of all $ T ( t) $, |
| + | $ t > 0 $, |
| + | then $ D ( A _ {0} ) $ |
| + | is dense in $ X _ {0} $ |
| + | and, moreover, $ \cap _ {n} D ( A _ {0} ^ {n} ) $ |
| + | is dense in $ X _ {0} $. |
| + | The values of $ A _ {0} $ |
| + | also lie in $ X _ {0} $. |
| + | If $ A _ {0} $ |
| + | is an unbounded operator, then $ D ( A _ {0)} $ |
| + | is a set of the first category in $ X _ {0} $. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392041.png" /></td> </tr></table>
| + | If $ X _ {0} $ |
| + | does not contain elements $ x $ |
| + | for which $ T ( t) x \equiv 0 $, |
| + | then $ A _ {0} $ |
| + | has a closure $ A = \overline{ {A _ {0} }}\; $, |
| + | which is also called the generating operator of the semi-group $ T ( t) $. |
| + | In this case, for $ x \in D ( A) $, |
| | | |
− | These equations define an operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392042.png" /> which is, generally speaking, an extension of the closure of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392043.png" />. It is also called the generalized generating operator of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392044.png" />.
| + | $$ \tag{2 } |
| + | T ( t) x - T ( s) x = \int\limits _ { s } ^ { t } T ( \tau ) Ax d \tau , |
| + | $$ |
| | | |
− | On the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392045.png" /> of all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392046.png" /> for which the improper integral
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392047.png" /></td> <td valign="top" style="width:5%;text-align:right;">(3)</td></tr></table>
| + | \frac{dT ( t) x }{dt} |
| + | = A _ {0} T ( t) x = T ( t) Ax . |
| + | $$ |
| + | |
| + | These equations define an operator $ A $ |
| + | which is, generally speaking, an extension of the closure of $ A _ {0} $. |
| + | It is also called the generalized generating operator of $ T ( t) $. |
| + | |
| + | On the set $ D _ {R} $ |
| + | of all $ x \in X $ |
| + | for which the improper integral |
| + | |
| + | $$ \tag{3 } |
| + | \int\limits _ { 0 } ^ { t } T ( s) x ds |
| + | $$ |
| | | |
| converges, one defines the operator | | converges, one defines the operator |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392048.png" /></td> </tr></table>
| + | $$ |
| + | R ( \lambda ) x = \lim\limits _ {t \rightarrow 0 } \int\limits _ { t } ^ \infty e ^ |
| + | {- \lambda s } T ( s) x ds |
| + | $$ |
| | | |
− | for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392049.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392050.png" /> is the type of the semi-group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392051.png" />. This operator has the following properties: | + | for $ \mathop{\rm Re} \lambda > \omega $, |
| + | where $ \omega $ |
| + | is the type of the semi-group $ T ( t) $. |
| + | This operator has the following properties: |
| | | |
− | 1) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392052.png" />; | + | 1) $ R ( \lambda ) D _ {R} \subset D _ {R} $; |
| | | |
− | 2) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392053.png" />; | + | 2) $ R ( \lambda ) x - R ( \mu ) x = ( \mu - \lambda ) R ( \lambda ) R ( \mu ) x $; |
| | | |
− | 3) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392054.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392055.png" />; | + | 3) $ R ( \lambda ) ( \lambda I - A _ {0} ) x = x $, |
| + | $ x \in D ( A _ {0} ) $; |
| | | |
− | 4) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392056.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392057.png" />. | + | 4) $ ( \lambda I - A ) R ( \lambda ) x = x $, |
| + | $ x \in D _ {R} \cap X _ {0} $. |
| | | |
− | If the integral (3) converges absolutely for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392058.png" />, then the generating operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392059.png" /> exists if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392060.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392061.png" />, implies <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392062.png" />; the operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392063.png" /> is bounded and, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392064.png" />, it coincides with the [[Resolvent|resolvent]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392065.png" />. For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392066.png" /> to be closed (i.e. for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392067.png" />) it is necessary and sufficient that | + | If the integral (3) converges absolutely for any $ x \in X $, |
| + | then the generating operator $ A $ |
| + | exists if and only if $ T ( t) x \equiv 0 $, |
| + | $ x \in X $, |
| + | implies $ x = 0 $; |
| + | the operator $ R ( \lambda ) $ |
| + | is bounded and, if $ X = X _ {0} $, |
| + | it coincides with the [[Resolvent|resolvent]] of $ A $. |
| + | For $ A _ {0} $ |
| + | to be closed (i.e. for $ A = A _ {0} $) |
| + | it is necessary and sufficient that |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392068.png" /></td> </tr></table>
| + | $$ |
| + | \lim\limits _ {t \rightarrow 0 } |
| + | \frac{1}{t} |
| + | \int\limits _ { 0 } ^ { t } T ( s) x ds = x |
| + | $$ |
| | | |
− | for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392069.png" />. | + | for any $ x \in X _ {0} $. |
| | | |
− | The basic problem in the theory of operator semi-groups is to establish relations between properties of a semi-group and properties of its generating operator, where the latter are usually formulated in terms of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392070.png" />. | + | The basic problem in the theory of operator semi-groups is to establish relations between properties of a semi-group and properties of its generating operator, where the latter are usually formulated in terms of $ R ( \lambda ) $. |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> E. Hille, R.S. Phillips, "Functional analysis and semi-groups" , Amer. Math. Soc. (1957)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> P.P. Zabreiko, A.V. Zafievskii, "On a certain class of semigroups" ''Soviet Math. Dokl.'' , '''10''' : 6 (1969) pp. 1523–1526 ''Dokl. Akad. Nauk'' , '''189''' : 5 (1969) pp. 934–937</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> A.V. Zafievskii, "On semigroups with singularities summable with a power-weight at zero" ''Soviet Math. Dokl.'' , '''11''' : 6 (1970) pp. 1408–1411 ''Dokl. Akad. Nauk'' , '''195''' : 1 (1970) pp. 24–27</TD></TR></table> | + | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> E. Hille, R.S. Phillips, "Functional analysis and semi-groups" , Amer. Math. Soc. (1957) {{MR|0089373}} {{ZBL|0392.46001}} {{ZBL|0033.06501}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> P.P. Zabreiko, A.V. Zafievskii, "On a certain class of semigroups" ''Soviet Math. Dokl.'' , '''10''' : 6 (1969) pp. 1523–1526 ''Dokl. Akad. Nauk'' , '''189''' : 5 (1969) pp. 934–937 {{MR|264459}} {{ZBL|}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> A.V. Zafievskii, "On semigroups with singularities summable with a power-weight at zero" ''Soviet Math. Dokl.'' , '''11''' : 6 (1970) pp. 1408–1411 ''Dokl. Akad. Nauk'' , '''195''' : 1 (1970) pp. 24–27 {{MR|278121}} {{ZBL|}} </TD></TR></table> |
− | | |
− | | |
| | | |
| ====Comments==== | | ====Comments==== |
− |
| |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> S.G. Krein, "Linear differential equations in Banach space" , ''Transl. Math. Monogr.'' , '''29''' , Amer. Math. Soc. (1971) (Translated from Russian)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> A. Pazy, "Semigroups of linear operators and applications to partial differential equations" , Springer (1983)</TD></TR></table> | + | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> S.G. Krein, "Linear differential equations in Banach space" , ''Transl. Math. Monogr.'' , '''29''' , Amer. Math. Soc. (1971) (Translated from Russian) {{MR|0342804}} {{ZBL|0179.20701}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> A. Pazy, "Semigroups of linear operators and applications to partial differential equations" , Springer (1983) {{MR|0710486}} {{ZBL|0516.47023}} </TD></TR></table> |
The derivative at zero of a semi-group of linear operators (cf. Semi-group of operators) $ T ( t) $,
$ 0 < t < \infty $,
acting on a complex Banach space $ X $.
If $ T ( t) $
is continuous in the operator norm, then it has the form $ T ( t) = e ^ {t A _ {0} } $,
where $ A _ {0} $
is a bounded operator,
$$ \tag{1 }
\lim\limits _ {t \rightarrow 0 }
\frac{T ( t) x - x }{t}
= A _ {0} x
$$
for any $ x \in X $,
and $ A _ {0} $
is the generating operator of this semi-group. Conversely, if the limit on the left-hand side exists, for all $ x \in X $,
then $ T ( t) = e ^ {t A _ {0} } $.
A more complicated situation arises when $ T ( t) $
is only a strongly-continuous semi-group. In this case the limit (1) does not necessarily exist for every $ x $.
The operator $ A _ {0} $,
defined on the linear set $ D ( A _ {0} ) $
of all $ x $
for which the limit exists, is linear and unbounded, and is called the infinitesimal operator. In particular, $ A _ {0} $
is defined on all elements of the form $ \int _ \alpha ^ \beta T ( t) y dt $,
$ \alpha , \beta > 0 $,
$ y \in X $.
If $ X _ {0} $
denotes the closure of the union of the range of values of all $ T ( t) $,
$ t > 0 $,
then $ D ( A _ {0} ) $
is dense in $ X _ {0} $
and, moreover, $ \cap _ {n} D ( A _ {0} ^ {n} ) $
is dense in $ X _ {0} $.
The values of $ A _ {0} $
also lie in $ X _ {0} $.
If $ A _ {0} $
is an unbounded operator, then $ D ( A _ {0)} $
is a set of the first category in $ X _ {0} $.
If $ X _ {0} $
does not contain elements $ x $
for which $ T ( t) x \equiv 0 $,
then $ A _ {0} $
has a closure $ A = \overline{ {A _ {0} }}\; $,
which is also called the generating operator of the semi-group $ T ( t) $.
In this case, for $ x \in D ( A) $,
$$ \tag{2 }
T ( t) x - T ( s) x = \int\limits _ { s } ^ { t } T ( \tau ) Ax d \tau ,
$$
$$
\frac{dT ( t) x }{dt}
= A _ {0} T ( t) x = T ( t) Ax .
$$
These equations define an operator $ A $
which is, generally speaking, an extension of the closure of $ A _ {0} $.
It is also called the generalized generating operator of $ T ( t) $.
On the set $ D _ {R} $
of all $ x \in X $
for which the improper integral
$$ \tag{3 }
\int\limits _ { 0 } ^ { t } T ( s) x ds
$$
converges, one defines the operator
$$
R ( \lambda ) x = \lim\limits _ {t \rightarrow 0 } \int\limits _ { t } ^ \infty e ^
{- \lambda s } T ( s) x ds
$$
for $ \mathop{\rm Re} \lambda > \omega $,
where $ \omega $
is the type of the semi-group $ T ( t) $.
This operator has the following properties:
1) $ R ( \lambda ) D _ {R} \subset D _ {R} $;
2) $ R ( \lambda ) x - R ( \mu ) x = ( \mu - \lambda ) R ( \lambda ) R ( \mu ) x $;
3) $ R ( \lambda ) ( \lambda I - A _ {0} ) x = x $,
$ x \in D ( A _ {0} ) $;
4) $ ( \lambda I - A ) R ( \lambda ) x = x $,
$ x \in D _ {R} \cap X _ {0} $.
If the integral (3) converges absolutely for any $ x \in X $,
then the generating operator $ A $
exists if and only if $ T ( t) x \equiv 0 $,
$ x \in X $,
implies $ x = 0 $;
the operator $ R ( \lambda ) $
is bounded and, if $ X = X _ {0} $,
it coincides with the resolvent of $ A $.
For $ A _ {0} $
to be closed (i.e. for $ A = A _ {0} $)
it is necessary and sufficient that
$$
\lim\limits _ {t \rightarrow 0 }
\frac{1}{t}
\int\limits _ { 0 } ^ { t } T ( s) x ds = x
$$
for any $ x \in X _ {0} $.
The basic problem in the theory of operator semi-groups is to establish relations between properties of a semi-group and properties of its generating operator, where the latter are usually formulated in terms of $ R ( \lambda ) $.
References
[1] | E. Hille, R.S. Phillips, "Functional analysis and semi-groups" , Amer. Math. Soc. (1957) MR0089373 Zbl 0392.46001 Zbl 0033.06501 |
[2] | P.P. Zabreiko, A.V. Zafievskii, "On a certain class of semigroups" Soviet Math. Dokl. , 10 : 6 (1969) pp. 1523–1526 Dokl. Akad. Nauk , 189 : 5 (1969) pp. 934–937 MR264459 |
[3] | A.V. Zafievskii, "On semigroups with singularities summable with a power-weight at zero" Soviet Math. Dokl. , 11 : 6 (1970) pp. 1408–1411 Dokl. Akad. Nauk , 195 : 1 (1970) pp. 24–27 MR278121 |
References
[a1] | S.G. Krein, "Linear differential equations in Banach space" , Transl. Math. Monogr. , 29 , Amer. Math. Soc. (1971) (Translated from Russian) MR0342804 Zbl 0179.20701 |
[a2] | A. Pazy, "Semigroups of linear operators and applications to partial differential equations" , Springer (1983) MR0710486 Zbl 0516.47023 |