Namespaces
Variants
Actions

Difference between revisions of "Singular point, index of a"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (fixing superscripts)
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
One of the basic characteristics of an isolated [[Singular point|singular point]] of a vector field. Let a vector field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085600/s0856001.png" /> be defined on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085600/s0856002.png" />, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085600/s0856003.png" /> be a sphere of small radius surrounding a singular point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085600/s0856004.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085600/s0856005.png" />. The degree of the mapping (cf. [[Degree of a mapping|Degree of a mapping]])
+
<!--
 +
s0856001.png
 +
$#A+1 = 12 n = 0
 +
$#C+1 = 12 : ~/encyclopedia/old_files/data/S085/S.0805600 Singular point, index of a
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085600/s0856006.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
is then called the index, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085600/s0856007.png" />, of the singular point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085600/s0856008.png" /> of the vector field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085600/s0856009.png" />, i.e.
+
One of the basic characteristics of an isolated [[Singular point|singular point]] of a vector field. Let a vector field  $  X $
 +
be defined on  $  \mathbf R  ^ {n} $,  
 +
and let  $  Q $
 +
be a sphere of small radius surrounding a singular point $  x _ {0} $
 +
such that  $  X \mid  _ {Q} \neq 0 $.  
 +
The degree of the mapping (cf. [[Degree of a mapping|Degree of a mapping]])
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085600/s08560010.png" /></td> </tr></table>
+
$$
 +
f: Q  \rightarrow  S  ^ {n-1} ,\ \
 +
f( x)  = X
 +
\frac{(z)}{\| X( x) \| }
 +
,
 +
$$
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085600/s08560011.png" /> is non-degenerate, then
+
is then called the index,  $  \mathop{\rm ind} _ {x _ {0}  } ( X) $,
 +
of the singular point  $  x _ {0} $
 +
of the vector field  $  X $,
 +
i.e.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085600/s08560012.png" /></td> </tr></table>
+
$$
 +
\mathop{\rm ind} _ {x _ {0}  } ( X)  =   \mathop{\rm deg}  f _ {x _ {0}  } .
 +
$$
  
 +
If  $  x _ {0} $
 +
is non-degenerate, then
  
 +
$$
 +
\mathop{\rm ind} _ {x _ {0}  } ( X)  =  \mathop{\rm sign}  \mathop{\rm det}  \left \|
 +
 +
\frac{\partial  X  ^ {j} }{\partial  x  ^ {i} }
 +
\right \| .
 +
$$
  
 
====Comments====
 
====Comments====

Latest revision as of 08:21, 21 March 2022


One of the basic characteristics of an isolated singular point of a vector field. Let a vector field $ X $ be defined on $ \mathbf R ^ {n} $, and let $ Q $ be a sphere of small radius surrounding a singular point $ x _ {0} $ such that $ X \mid _ {Q} \neq 0 $. The degree of the mapping (cf. Degree of a mapping)

$$ f: Q \rightarrow S ^ {n-1} ,\ \ f( x) = X \frac{(z)}{\| X( x) \| } , $$

is then called the index, $ \mathop{\rm ind} _ {x _ {0} } ( X) $, of the singular point $ x _ {0} $ of the vector field $ X $, i.e.

$$ \mathop{\rm ind} _ {x _ {0} } ( X) = \mathop{\rm deg} f _ {x _ {0} } . $$

If $ x _ {0} $ is non-degenerate, then

$$ \mathop{\rm ind} _ {x _ {0} } ( X) = \mathop{\rm sign} \mathop{\rm det} \left \| \frac{\partial X ^ {j} }{\partial x ^ {i} } \right \| . $$

Comments

See also Poincaré theorem; Rotation of a vector field.

References

[a1] M. Berger, B. Gostiaux, "Differential geometry: manifolds, curves, and surfaces" , Springer (1988) (Translated from French)
[a2] J.A. Thorpe, "Elementary topics in differential geometry" , Springer (1979)
[a3] C. Conley, E. Zehnder, "Morse type index theory for flows and periodic solutions of Hamiltonian equations" Comm. Pure Appl. Math. , 37 (1984) pp. 207–253
[a4] K.P. Rybakovskii, "The homotopy index and partial differential equations" , Springer (1987) (Translated from Russian)
How to Cite This Entry:
Singular point, index of a. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Singular_point,_index_of_a&oldid=11420
This article was adapted from an original article by M.I. Voitsekhovskii (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article