Difference between revisions of "Hilbert inequality"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | h0472701.png | ||
+ | $#A+1 = 22 n = 1 | ||
+ | $#C+1 = 22 : ~/encyclopedia/old_files/data/H047/H.0407270 Hilbert inequality | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
A theorem of D. Hilbert on double series: | A theorem of D. Hilbert on double series: | ||
− | + | $$ \tag{* } | |
+ | \sum _ {m = 1 } ^ \infty \sum _ {n = 1 } ^ \infty | ||
+ | |||
+ | \frac{a _ {n} b _ {m} }{n + m } | ||
+ | < \ | ||
+ | |||
+ | \frac \pi {\sin ( \pi /p) } | ||
+ | |||
+ | \left ( | ||
+ | \sum _ {n = 1 } ^ \infty | ||
+ | a _ {n} ^ {p} \right ) ^ {1/p} \ | ||
+ | \left ( | ||
+ | \sum _ {m = 1 } ^ \infty | ||
+ | b _ {m} ^ {q } \right ) ^ {1/q } , | ||
+ | $$ | ||
where | where | ||
− | + | $$ | |
+ | p > 1,\ \ | ||
+ | q = | ||
+ | \frac{p}{p - 1 } | ||
+ | ,\ \ | ||
+ | { | ||
+ | \frac{1}{p} | ||
+ | } + { | ||
+ | \frac{1}{q } | ||
+ | } = 1,\ \ | ||
+ | a _ {n} , b _ {m} \geq 0, | ||
+ | $$ | ||
+ | |||
+ | and the series on the right-hand side have finite positive sums. The constant $ \pi / {\sin ( \pi / p ) } $ | ||
+ | is precise, i.e. it cannot be decreased. The validity of (*) with $ p= 2 $ | ||
+ | was demonstrated by Hilbert, without the precise constant, in his course on integral equations. Its proof was published by H. Weyl [[#References|[1]]]. The precise constant was found by I. Schur [[#References|[2]]], while the inequality (*) for arbitrary $ p > 1 $ | ||
+ | was first quoted by G.H. Hardy and M. Riesz in 1925. There exist integral analogues and generalizations of (*), for example | ||
− | + | $$ | |
+ | \int\limits _ { 0 } ^ \infty | ||
+ | \int\limits _ { 0 } ^ \infty | ||
+ | K ^ \lambda ( x, y) f ( x) g ( y) dx dy \leq | ||
+ | $$ | ||
− | + | $$ | |
+ | \leq \ | ||
+ | K ^ \lambda \left ( | ||
+ | \int\limits _ { 0 } ^ \infty f ^ { p } ( x) dx \right ) ^ {1/p} \left | ||
+ | ( \int\limits _ { 0 } ^ \infty g ^ {r} ( y) dy \right ) ^ {1/r} , | ||
+ | $$ | ||
− | + | where $ K( x, y) $ | |
+ | is a non-negative kernel, homogeneous of degree $ - 1 $, | ||
+ | $ p > 1 $, | ||
+ | $ r > 1 $, | ||
+ | $ \lambda = p ^ {-} 1 + r ^ {-} 1 \leq 1 $, | ||
+ | $ f, g \geq 0 $, | ||
+ | and | ||
− | + | $$ | |
+ | K = \int\limits _ { 0 } ^ \infty | ||
+ | u ^ {- 1/ \lambda q } K ( 1, u) du; | ||
+ | $$ | ||
− | + | and the previously obtained special case of this inequality [[#References|[4]]] with kernel $ K( x, y) = 1/( x + y) $( | |
+ | the so-called double-parametric Hilbert inequality) and constant $ K ^ \lambda = ( \pi / \sin {\lambda q } ) ^ \lambda $. | ||
+ | The preciseness of this constant has been proved for $ r/( r- 1) = p $. | ||
+ | It is also asymptotically precise as $ p \rightarrow 1 $ | ||
+ | for an arbitrary admissible fixed $ r $. | ||
+ | The problem of the asymptotic behaviour of the constant in (*) for finite sums ( $ 1 \leq n, m \leq N $) | ||
+ | has not been solved (1988); it is only known that if $ p = q = 2 $, | ||
+ | the constant is | ||
− | + | $$ | |
+ | \pi - | ||
+ | \frac{\pi ^ {5} }{2} | ||
− | + | ( \mathop{\rm ln} N) ^ {2} + O ( \mathop{\rm ln} \mathop{\rm ln} \{ N \ | |
+ | ( \mathop{\rm ln} N) ^ {-} 3 \} ). | ||
+ | $$ | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> H. Weyl, "Singuläre Integralgleichungen mit besonderer Berücksichtigung des Fourierschen Integraltheorems" , Göttingen (1908) (Thesis)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> I. Schur, "Bemerkungen zur Theorie der beschränkten Bilinearformen mit unendlich vielen Veränderlichen" ''J. Reine Angew. Math.'' , '''140''' (1911) pp. 1–28</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> G.H. Hardy, J.E. Littlewood, G. Pólya, "Inequalities" , Cambridge Univ. Press (1934)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> F.F. Bonsall, "Inequalities with non-conjugate parameters" ''Quart. J. Math. Oxford (2)'' , '''2''' (1951) pp. 135–150</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> V. Levin, "On the two-parameter extension and analogue of Hilbert's inequality" ''J. London Math. Soc. (1)'' , '''11''' (1936) pp. 119–124</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> N.G. de Bruijn, H.S. Wilf, "On Hilbert's inequality in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047270/h04727023.png" /> dimensions" ''Bull. Amer. Math. Soc.'' , '''68''' (1962) pp. 70–73</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> P.L. Walker, "A note on an inequality with non-conjugate parameters" ''Proc. Edinburgh Math. Soc.'' , '''18''' (1973) pp. 293–294</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> H. Weyl, "Singuläre Integralgleichungen mit besonderer Berücksichtigung des Fourierschen Integraltheorems" , Göttingen (1908) (Thesis)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> I. Schur, "Bemerkungen zur Theorie der beschränkten Bilinearformen mit unendlich vielen Veränderlichen" ''J. Reine Angew. Math.'' , '''140''' (1911) pp. 1–28</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> G.H. Hardy, J.E. Littlewood, G. Pólya, "Inequalities" , Cambridge Univ. Press (1934)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> F.F. Bonsall, "Inequalities with non-conjugate parameters" ''Quart. J. Math. Oxford (2)'' , '''2''' (1951) pp. 135–150</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> V. Levin, "On the two-parameter extension and analogue of Hilbert's inequality" ''J. London Math. Soc. (1)'' , '''11''' (1936) pp. 119–124</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> N.G. de Bruijn, H.S. Wilf, "On Hilbert's inequality in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047270/h04727023.png" /> dimensions" ''Bull. Amer. Math. Soc.'' , '''68''' (1962) pp. 70–73</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> P.L. Walker, "A note on an inequality with non-conjugate parameters" ''Proc. Edinburgh Math. Soc.'' , '''18''' (1973) pp. 293–294</TD></TR></table> |
Latest revision as of 22:10, 5 June 2020
A theorem of D. Hilbert on double series:
$$ \tag{* } \sum _ {m = 1 } ^ \infty \sum _ {n = 1 } ^ \infty \frac{a _ {n} b _ {m} }{n + m } < \ \frac \pi {\sin ( \pi /p) } \left ( \sum _ {n = 1 } ^ \infty a _ {n} ^ {p} \right ) ^ {1/p} \ \left ( \sum _ {m = 1 } ^ \infty b _ {m} ^ {q } \right ) ^ {1/q } , $$
where
$$ p > 1,\ \ q = \frac{p}{p - 1 } ,\ \ { \frac{1}{p} } + { \frac{1}{q } } = 1,\ \ a _ {n} , b _ {m} \geq 0, $$
and the series on the right-hand side have finite positive sums. The constant $ \pi / {\sin ( \pi / p ) } $ is precise, i.e. it cannot be decreased. The validity of (*) with $ p= 2 $ was demonstrated by Hilbert, without the precise constant, in his course on integral equations. Its proof was published by H. Weyl [1]. The precise constant was found by I. Schur [2], while the inequality (*) for arbitrary $ p > 1 $ was first quoted by G.H. Hardy and M. Riesz in 1925. There exist integral analogues and generalizations of (*), for example
$$ \int\limits _ { 0 } ^ \infty \int\limits _ { 0 } ^ \infty K ^ \lambda ( x, y) f ( x) g ( y) dx dy \leq $$
$$ \leq \ K ^ \lambda \left ( \int\limits _ { 0 } ^ \infty f ^ { p } ( x) dx \right ) ^ {1/p} \left ( \int\limits _ { 0 } ^ \infty g ^ {r} ( y) dy \right ) ^ {1/r} , $$
where $ K( x, y) $ is a non-negative kernel, homogeneous of degree $ - 1 $, $ p > 1 $, $ r > 1 $, $ \lambda = p ^ {-} 1 + r ^ {-} 1 \leq 1 $, $ f, g \geq 0 $, and
$$ K = \int\limits _ { 0 } ^ \infty u ^ {- 1/ \lambda q } K ( 1, u) du; $$
and the previously obtained special case of this inequality [4] with kernel $ K( x, y) = 1/( x + y) $( the so-called double-parametric Hilbert inequality) and constant $ K ^ \lambda = ( \pi / \sin {\lambda q } ) ^ \lambda $. The preciseness of this constant has been proved for $ r/( r- 1) = p $. It is also asymptotically precise as $ p \rightarrow 1 $ for an arbitrary admissible fixed $ r $. The problem of the asymptotic behaviour of the constant in (*) for finite sums ( $ 1 \leq n, m \leq N $) has not been solved (1988); it is only known that if $ p = q = 2 $, the constant is
$$ \pi - \frac{\pi ^ {5} }{2} ( \mathop{\rm ln} N) ^ {2} + O ( \mathop{\rm ln} \mathop{\rm ln} \{ N \ ( \mathop{\rm ln} N) ^ {-} 3 \} ). $$
References
[1] | H. Weyl, "Singuläre Integralgleichungen mit besonderer Berücksichtigung des Fourierschen Integraltheorems" , Göttingen (1908) (Thesis) |
[2] | I. Schur, "Bemerkungen zur Theorie der beschränkten Bilinearformen mit unendlich vielen Veränderlichen" J. Reine Angew. Math. , 140 (1911) pp. 1–28 |
[3] | G.H. Hardy, J.E. Littlewood, G. Pólya, "Inequalities" , Cambridge Univ. Press (1934) |
[4] | F.F. Bonsall, "Inequalities with non-conjugate parameters" Quart. J. Math. Oxford (2) , 2 (1951) pp. 135–150 |
[5] | V. Levin, "On the two-parameter extension and analogue of Hilbert's inequality" J. London Math. Soc. (1) , 11 (1936) pp. 119–124 |
[6] | N.G. de Bruijn, H.S. Wilf, "On Hilbert's inequality in dimensions" Bull. Amer. Math. Soc. , 68 (1962) pp. 70–73 |
[7] | P.L. Walker, "A note on an inequality with non-conjugate parameters" Proc. Edinburgh Math. Soc. , 18 (1973) pp. 293–294 |
Hilbert inequality. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Hilbert_inequality&oldid=11297