Namespaces
Variants
Actions

Difference between revisions of "K-space"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (details)
 
Line 8: Line 8:
 
<TR><TD valign="top">[1]</TD> <TD valign="top"> L.V. Kantorovich, "Lineare halbgeordnete Räume"  ''Mat. Sb.'' , '''2'''  (1937)  pp. 121–165</TD></TR>
 
<TR><TD valign="top">[1]</TD> <TD valign="top"> L.V. Kantorovich, "Lineare halbgeordnete Räume"  ''Mat. Sb.'' , '''2'''  (1937)  pp. 121–165</TD></TR>
 
<TR><TD valign="top">[a1]</TD> <TD valign="top">  H. Freudenthal,  "Teilweise geordnete Moduln"  ''Proc. K. Ned. Akad. Wetensch. Amsterdam'' , '''39'''  (1936)  pp. 641–651</TD></TR>
 
<TR><TD valign="top">[a1]</TD> <TD valign="top">  H. Freudenthal,  "Teilweise geordnete Moduln"  ''Proc. K. Ned. Akad. Wetensch. Amsterdam'' , '''39'''  (1936)  pp. 641–651</TD></TR>
<TR><TD valign="top">[a2]</TD> <TD valign="top">  F. Riesz,  "Sur quelques notions fondamentales dans la théorie générale des opérations linéaires"  ''Ann. of Math.'' , '''41'''  (1940)  pp. 174–206</TD></TR>
+
<TR><TD valign="top">[a2]</TD> <TD valign="top">  F. Riesz,  "Sur quelques notions fondamentales dans la théorie générale des opérations linéaires"  ''Ann. of Math.'' , '''41'''  (1940)  pp. 174–206 {{ZBL|0022.31802}}</TD></TR>
 
<TR><TD valign="top">[a3]</TD> <TD valign="top">  S.W.P. Steen,  "An introduction to the theory of operators I"  ''Proc. London Math. Soc. (2)'' , '''41'''  (1936)  pp. 361–392</TD></TR>
 
<TR><TD valign="top">[a3]</TD> <TD valign="top">  S.W.P. Steen,  "An introduction to the theory of operators I"  ''Proc. London Math. Soc. (2)'' , '''41'''  (1936)  pp. 361–392</TD></TR>
 
<TR><TD valign="top">[a4]</TD> <TD valign="top">  W.A.J. Luxemburg,  A.C. Zaanen,  "Riesz spaces" , '''I''' , North-Holland  (1971)</TD></TR>
 
<TR><TD valign="top">[a4]</TD> <TD valign="top">  W.A.J. Luxemburg,  A.C. Zaanen,  "Riesz spaces" , '''I''' , North-Holland  (1971)</TD></TR>

Latest revision as of 11:16, 3 August 2025

Kantorovich space

An ordered complete vector space, i.e. a semi-ordered vector space (cf. Semi-ordered space) in which every set that is bounded from above has a supremum. This notion was introduced by L.V. Kantorovich [1].

References

[1] L.V. Kantorovich, "Lineare halbgeordnete Räume" Mat. Sb. , 2 (1937) pp. 121–165
[a1] H. Freudenthal, "Teilweise geordnete Moduln" Proc. K. Ned. Akad. Wetensch. Amsterdam , 39 (1936) pp. 641–651
[a2] F. Riesz, "Sur quelques notions fondamentales dans la théorie générale des opérations linéaires" Ann. of Math. , 41 (1940) pp. 174–206 Zbl 0022.31802
[a3] S.W.P. Steen, "An introduction to the theory of operators I" Proc. London Math. Soc. (2) , 41 (1936) pp. 361–392
[a4] W.A.J. Luxemburg, A.C. Zaanen, "Riesz spaces" , I , North-Holland (1971)
[a5] A.C. Zaanen, "Riesz spaces" , II , North-Holland (1983)
[a6] H.H. Schaefer, "Banach lattices and positive operators" , Springer (1974)
[a7] B.Z. Vulikh, "Introduction to the theory of partially ordered spaces" , Wolters-Noordhoff (1967) (Translated from Russian)

See also

Kelley space

How to Cite This Entry:
K-space. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=K-space&oldid=56197
This article was adapted from an original article by M.I. Voitsekhovskii (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article