Difference between revisions of "VMO-space"
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
|||
Line 20: | Line 20: | ||
$$ | $$ | ||
− | {\lim\limits } _ { | + | {\lim\limits } _ {R \rightarrow 0 } |
− | \frac{1}{\left | | + | \sup_{r<R} |
− | } \int\limits _ { | + | { |
+ | \frac{1}{\left | B_R \right | } | ||
+ | } \int\limits _ { B_R } {\left | {f - f _ {B_R} } \right | } {dt } \rightarrow 0. | ||
$$ | $$ | ||
− | Here, $ | | + | Here, $ | B_R | $ denotes the volume of the ball $ B_R $ |
− | denotes the volume of the ball $ | + | and $ f _ {B_R} $ |
− | and $ f _ { | ||
denotes the mean of $ f $ | denotes the mean of $ f $ | ||
− | over $ | + | over $ B_R $( |
see [[BMO-space| $ { \mathop{\rm BMO} } $- | see [[BMO-space| $ { \mathop{\rm BMO} } $- | ||
space]]). As with $ { \mathop{\rm BMO} } $, | space]]). As with $ { \mathop{\rm BMO} } $, |
Latest revision as of 16:24, 8 June 2024
space of functions of vanishing mean oscillation
The class of functions of vanishing mean oscillation on $ \mathbf R ^ {n} $, denoted by $ { \mathop{\rm VMO} } ( \mathbf R ^ {n} ) $, is the subclass of $ { \mathop{\rm BMO} } ( \mathbf R ^ {n} ) $ consisting of the functions $ f $ with the property that
$$ {\lim\limits } _ {R \rightarrow 0 } \sup_{r<R} { \frac{1}{\left | B_R \right | } } \int\limits _ { B_R } {\left | {f - f _ {B_R} } \right | } {dt } \rightarrow 0. $$
Here, $ | B_R | $ denotes the volume of the ball $ B_R $ and $ f _ {B_R} $ denotes the mean of $ f $ over $ B_R $( see $ { \mathop{\rm BMO} } $- space). As with $ { \mathop{\rm BMO} } $, $ { \mathop{\rm VMO} } $ can be defined for spaces of homogeneous type.
Some properties of $ { \mathop{\rm VMO} } $ are as follows (see also [a1], [a2], [a3]). Bounded, uniformly continuous functions are in $ { \mathop{\rm VMO} } $( cf. Uniform continuity), and $ { \mathop{\rm VMO} } $ can be obtained as the $ { \mathop{\rm VMO} } $- closure of the continuous functions that vanish at infinity. The Hilbert transform of a bounded, uniformly continuous function on $ \mathbf R $ is in $ { \mathop{\rm VMO} } ( \mathbf R ) $. $ { \mathop{\rm VMO} } ( \mathbf R ^ {n} ) $ is the dual of the Hardy space $ H ^ {1} ( \mathbf R ^ {n} ) $( cf. also Hardy spaces).
$ { \mathop{\rm VMO} } $ appears in the theory of Douglas algebras: Let $ T $ be the boundary of the unit disc in $ \mathbf C $. Let $ H ^ \infty $ denote the subspace of $ L _ \infty ( T ) $ consisting of the boundary values of bounded holomorphic functions (cf. Analytic function) on the unit disc and let $ C $ denote the set of continuous functions on $ T $. Put $ H ^ \infty + C = \{ {f + g } : {f \in H ^ \infty , g \in C } \} $. $ H ^ \infty + C $ is a closed subalgebra of $ L _ \infty ( T ) $ and the simplest example of a Douglas algebra. Its largest self-adjoint subalgebra, $ QC $, equals $ L _ \infty ( T ) \cap { \mathop{\rm VMO} } ( T ) $, [a2], [a3].
See also $ { \mathop{\rm BMO} } $- space.
References
[a1] | R.R. Coifman, G. Weiss, "Extensions of Hardy-spaces and their use in analysis" Bull. Amer. Math. Soc. , 83 (1977) pp. 569–645 |
[a2] | J. Garnett, "Bounded analytic functions" , Acad. Press (1981) |
[a3] | D. Sarason, "Functions of vanishing mean oscillation" Trans. Amer. Math. Soc. , 207 (1975) pp. 391–405 |
VMO-space. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=VMO-space&oldid=49101