Difference between revisions of "VMO-space"
(Importing text file) |
|||
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | v1100502.png | ||
+ | $#A+1 = 34 n = 0 | ||
+ | $#C+1 = 34 : ~/encyclopedia/old_files/data/V110/V.1100050 \BMI {fnnme VMO}\EMI\AAhspace, | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
''space of functions of vanishing mean oscillation'' | ''space of functions of vanishing mean oscillation'' | ||
− | The class of functions of vanishing mean oscillation on | + | The class of functions of vanishing mean oscillation on $ \mathbf R ^ {n} $, |
+ | denoted by $ { \mathop{\rm VMO} } ( \mathbf R ^ {n} ) $, | ||
+ | is the subclass of $ { \mathop{\rm BMO} } ( \mathbf R ^ {n} ) $ | ||
+ | consisting of the functions $ f $ | ||
+ | with the property that | ||
− | < | + | $$ |
+ | {\lim\limits } _ {R \rightarrow 0 } | ||
+ | \sup_{r<R} | ||
+ | { | ||
+ | \frac{1}{\left | B_R \right | } | ||
+ | } \int\limits _ { B_R } {\left | {f - f _ {B_R} } \right | } {dt } \rightarrow 0. | ||
+ | $$ | ||
− | Here, | + | Here, $ | B_R | $ denotes the volume of the ball $ B_R $ |
+ | and $ f _ {B_R} $ | ||
+ | denotes the mean of $ f $ | ||
+ | over $ B_R $( | ||
+ | see [[BMO-space| $ { \mathop{\rm BMO} } $- | ||
+ | space]]). As with $ { \mathop{\rm BMO} } $, | ||
+ | $ { \mathop{\rm VMO} } $ | ||
+ | can be defined for spaces of homogeneous type. | ||
− | Some properties of | + | Some properties of $ { \mathop{\rm VMO} } $ |
+ | are as follows (see also [[#References|[a1]]], [[#References|[a2]]], [[#References|[a3]]]). Bounded, uniformly continuous functions are in $ { \mathop{\rm VMO} } $( | ||
+ | cf. [[Uniform continuity|Uniform continuity]]), and $ { \mathop{\rm VMO} } $ | ||
+ | can be obtained as the $ { \mathop{\rm VMO} } $- | ||
+ | closure of the continuous functions that vanish at infinity. The [[Hilbert transform|Hilbert transform]] of a bounded, uniformly continuous function on $ \mathbf R $ | ||
+ | is in $ { \mathop{\rm VMO} } ( \mathbf R ) $. | ||
+ | $ { \mathop{\rm VMO} } ( \mathbf R ^ {n} ) $ | ||
+ | is the dual of the Hardy space $ H ^ {1} ( \mathbf R ^ {n} ) $( | ||
+ | cf. also [[Hardy spaces|Hardy spaces]]). | ||
− | + | $ { \mathop{\rm VMO} } $ | |
+ | appears in the theory of Douglas algebras: Let $ T $ | ||
+ | be the boundary of the unit disc in $ \mathbf C $. | ||
+ | Let $ H ^ \infty $ | ||
+ | denote the subspace of $ L _ \infty ( T ) $ | ||
+ | consisting of the boundary values of bounded holomorphic functions (cf. [[Analytic function|Analytic function]]) on the unit disc and let $ C $ | ||
+ | denote the set of continuous functions on $ T $. | ||
+ | Put $ H ^ \infty + C = \{ {f + g } : {f \in H ^ \infty , g \in C } \} $. | ||
+ | $ H ^ \infty + C $ | ||
+ | is a closed subalgebra of $ L _ \infty ( T ) $ | ||
+ | and the simplest example of a Douglas algebra. Its largest self-adjoint subalgebra, $ QC $, | ||
+ | equals $ L _ \infty ( T ) \cap { \mathop{\rm VMO} } ( T ) $, | ||
+ | [[#References|[a2]]], [[#References|[a3]]]. | ||
− | See also [[BMO-space| | + | See also [[BMO-space| $ { \mathop{\rm BMO} } $- |
+ | space]]. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R.R. Coifman, G. Weiss, "Extensions of Hardy-spaces and their use in analysis" ''Bull. Amer. Math. Soc.'' , '''83''' (1977) pp. 569–645</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> J. Garnett, "Bounded analytic functions" , Acad. Press (1981)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> D. Sarason, "Functions of vanishing mean oscillation" ''Trans. Amer. Math. Soc.'' , '''207''' (1975) pp. 391–405</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R.R. Coifman, G. Weiss, "Extensions of Hardy-spaces and their use in analysis" ''Bull. Amer. Math. Soc.'' , '''83''' (1977) pp. 569–645</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> J. Garnett, "Bounded analytic functions" , Acad. Press (1981)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> D. Sarason, "Functions of vanishing mean oscillation" ''Trans. Amer. Math. Soc.'' , '''207''' (1975) pp. 391–405</TD></TR></table> |
Latest revision as of 16:24, 8 June 2024
space of functions of vanishing mean oscillation
The class of functions of vanishing mean oscillation on $ \mathbf R ^ {n} $, denoted by $ { \mathop{\rm VMO} } ( \mathbf R ^ {n} ) $, is the subclass of $ { \mathop{\rm BMO} } ( \mathbf R ^ {n} ) $ consisting of the functions $ f $ with the property that
$$ {\lim\limits } _ {R \rightarrow 0 } \sup_{r<R} { \frac{1}{\left | B_R \right | } } \int\limits _ { B_R } {\left | {f - f _ {B_R} } \right | } {dt } \rightarrow 0. $$
Here, $ | B_R | $ denotes the volume of the ball $ B_R $ and $ f _ {B_R} $ denotes the mean of $ f $ over $ B_R $( see $ { \mathop{\rm BMO} } $- space). As with $ { \mathop{\rm BMO} } $, $ { \mathop{\rm VMO} } $ can be defined for spaces of homogeneous type.
Some properties of $ { \mathop{\rm VMO} } $ are as follows (see also [a1], [a2], [a3]). Bounded, uniformly continuous functions are in $ { \mathop{\rm VMO} } $( cf. Uniform continuity), and $ { \mathop{\rm VMO} } $ can be obtained as the $ { \mathop{\rm VMO} } $- closure of the continuous functions that vanish at infinity. The Hilbert transform of a bounded, uniformly continuous function on $ \mathbf R $ is in $ { \mathop{\rm VMO} } ( \mathbf R ) $. $ { \mathop{\rm VMO} } ( \mathbf R ^ {n} ) $ is the dual of the Hardy space $ H ^ {1} ( \mathbf R ^ {n} ) $( cf. also Hardy spaces).
$ { \mathop{\rm VMO} } $ appears in the theory of Douglas algebras: Let $ T $ be the boundary of the unit disc in $ \mathbf C $. Let $ H ^ \infty $ denote the subspace of $ L _ \infty ( T ) $ consisting of the boundary values of bounded holomorphic functions (cf. Analytic function) on the unit disc and let $ C $ denote the set of continuous functions on $ T $. Put $ H ^ \infty + C = \{ {f + g } : {f \in H ^ \infty , g \in C } \} $. $ H ^ \infty + C $ is a closed subalgebra of $ L _ \infty ( T ) $ and the simplest example of a Douglas algebra. Its largest self-adjoint subalgebra, $ QC $, equals $ L _ \infty ( T ) \cap { \mathop{\rm VMO} } ( T ) $, [a2], [a3].
See also $ { \mathop{\rm BMO} } $- space.
References
[a1] | R.R. Coifman, G. Weiss, "Extensions of Hardy-spaces and their use in analysis" Bull. Amer. Math. Soc. , 83 (1977) pp. 569–645 |
[a2] | J. Garnett, "Bounded analytic functions" , Acad. Press (1981) |
[a3] | D. Sarason, "Functions of vanishing mean oscillation" Trans. Amer. Math. Soc. , 207 (1975) pp. 391–405 |
VMO-space. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=VMO-space&oldid=18125