Difference between revisions of "Vitali theorem"
Ulf Rehmann (talk | contribs) m (MR/ZBL numbers added) |
(gather refs) |
||
(4 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
− | + | {{TEX|done}} | |
− | + | Vitali's covering theorem. If a system of closed sets $\mathcal F$ is a Vitali covering (see below) of a set $A\subset\mathbb R^n$, it is possible to extract from $\mathcal F$ an at most countable sequence of pairwise disjoint sets $\{F_i\}$, $i=1,2,\dots$, such that | |
+ | \begin{equation} | ||
+ | m_e\left[A\setminus\bigcup_{i=1}^{\infty}F_i\right]=0, | ||
+ | \end{equation} | ||
+ | where $m_e$ is the outer [[Lebesgue measure|Lebesgue measure]] in $\mathbb R^n$. | ||
− | + | A Vitali covering of a set $A\subset\mathbb R^n$ is a system $\mathcal E$ of subsets of $\mathbb R^n$ such that for any $x\in A$ there exists a sequence $\{E_n\}$ from $\mathcal E$ satisfying the following conditions: | |
+ | \begin{equation} | ||
+ | x\in\bigcap_{n=1}^{\infty}E_n; | ||
+ | \end{equation} | ||
+ | \begin{equation} | ||
+ | \delta_n = \delta(E_n) \to 0\quad \text{ if } n\to\infty, | ||
+ | \end{equation} | ||
+ | where $\delta(E_n)$ is the diameter of $E_n$; and | ||
+ | \begin{equation} | ||
+ | \inf_n\left[\sup\frac{m_e(E_n)}{m(I)}\right]=\alpha>0, | ||
+ | \end{equation} | ||
+ | where the supremum is taken over all $I$ (cubes with faces parallel to the coordinate planes and containing $E_n$), this supremum is said to be the regularity parameter of $E_n$. | ||
− | + | The theorem was demonstrated by G. Vitali [[#References|[1]]] for the case when $\mathcal F$ consists of cubes with faces parallel to the coordinate planes. Vitali's theorem is valid as stated if $\mathcal F$ is a Vitali covering of the set $A$ and not for a covering in the ordinary sense. This condition must always be satisfied, even if $\mathcal F$ is a system of segments and if to each $x\in A$ there corresponds a sequence $\{F_n\}$ from $\mathcal F$ with centres at $x$ and with diameters tending to zero. | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | The theorem was demonstrated by G. Vitali [[#References|[1]]] for the case when | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> G. Vitali, "Sui gruppi di punti e sulle funzioni di variabili reali" ''Atti Accad. Sci. Torino'' , '''43''' (1908) pp. 75–92 {{MR|}} {{ZBL|39.0101.05}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> S. Saks, "Theory of the integral" , Hafner (1952) (Translated from French) {{MR|0167578}} {{ZBL|1196.28001}} {{ZBL|0017.30004}} {{ZBL|63.0183.05}} </TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> G. Vitali, "Sui gruppi di punti e sulle funzioni di variabili reali" ''Atti Accad. Sci. Torino'' , '''43''' (1908) pp. 75–92 {{MR|}} {{ZBL|39.0101.05}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> S. Saks, "Theory of the integral" , Hafner (1952) (Translated from French) {{MR|0167578}} {{ZBL|1196.28001}} {{ZBL|0017.30004}} {{ZBL|63.0183.05}} </TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | For | + | For $ n =1 $, |
− | + | Vitali's covering theorem is a main ingredient in the proof of the Lebesgue theorem that a monotone function has a finite derivative almost everywhere [[#References|[a2]]]. | |
− | |||
− | + | There is another theorem that goes by the name Vitali convergence theorem. Let $ (X,\ {\mathcal A} ,\ \mu ) $ | |
+ | be a [[Measure space|measure space]], $ 1 \leq p < \infty $, | ||
+ | $ (f _{n} ) _{n=1} ^ \infty $ | ||
+ | a sequence in $ L _{p} (X) $, | ||
+ | and $ f $ | ||
+ | an $ {\mathcal A} $- | ||
+ | measurable function which is finite $ \mu $- | ||
+ | almost-everywhere and such that $ f _{n} \rightarrow f $ | ||
+ | $ \mu $- | ||
+ | almost-everywhere. Then $ f \in L _{p} (X) $ | ||
+ | and $ \| f - f _{n} \| _{p} \rightarrow 0 $ | ||
+ | if and only if: 1) for each $ \epsilon > 0 $ | ||
+ | there is a set $ A _ \epsilon \in {\mathcal A} $ | ||
+ | such that $ \mu (A _ \epsilon ) < \infty $ | ||
+ | and $ \int _{ X \setminus A _ \epsilon} | f _{n} | ^{p} \ d \mu < \epsilon $ | ||
+ | for all $ n \in \mathbf N $; | ||
+ | and 2) $ \lim\limits _{ {\mu (E) \rightarrow 0}} \ \int _{E} | f _{n} | ^{p} \ d \mu = 0 $ | ||
+ | uniformly in $ n $. | ||
+ | See [[#References|[a2]]]. | ||
− | + | At least two other useful theorems bear Vitali's name. The Vitali theorem generalizing the Lebesgue's dominated convergence theorem for what is called an equi-integrable or uniformly integrable family of functions. There is also the Vitali–Hahn–Saks theorem, which asserts that a [[pointwise limit]] of a sequence of ( $ \sigma $- | |
− | + | additive) measures on a $ \sigma $- | |
+ | field is still a ( $ \sigma $- | ||
+ | additive) measure. | ||
− | |||
− | + | Vitali's theorem on the uniform convergence of a sequence of holomorphic functions. Let a sequence $ \{ f _{n} (z) \} $ | |
+ | of holomorphic functions on a domain $ D $ | ||
+ | of the complex $ z $- | ||
+ | plane be uniformly bounded (cf. [[Uniform boundedness|Uniform boundedness]]) and converge on a set $ E $ | ||
+ | with a limit point in $ D $; | ||
+ | the sequence $ \{ f _{n} (z) \} $ | ||
+ | will then converge uniformly inside $ D $ | ||
+ | towards a holomorphic function, i.e. will converge uniformly on every compact set $ K \subset D $. | ||
+ | The theorem was obtained by G. Vitali . | ||
− | + | The [[compactness principle]] makes it possible to strengthen Vitali's theorem by replacing the condition of uniform boundedness on $ D $ | |
− | + | by the condition of uniform boundedness on every compact set $ K \subset D $. | |
+ | There also exist Vitali theorems for normal families (cf. [[Normal family|Normal family]]) of meromorphic functions, for families of quasi-analytic functions and for families of holomorphic functions of several complex variables; in the last case, however, additional limitations must be imposed on the set $ E \subset D \subset \mathbf C ^{n} $, | ||
+ | for example, $ E $ | ||
+ | must contain interior points in $ \mathbf C ^{n} $[[#References|[3]]], [[#References|[4]]]. | ||
''E.D. Solomentsev'' | ''E.D. Solomentsev'' | ||
− | |||
− | |||
− | |||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> C. Carathéodory, "Theory of functions of a complex variable" , '''1''' , Chelsea, reprint (1978) (Translated from German) {{MR|1570711}} {{MR|0064861}} {{MR|0060009}} {{ZBL|0056.06703}} {{ZBL|0055.30301}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> J.B. Conway, "Functions of one complex variable" , Springer (1973) {{MR|0447532}} {{ZBL|0277.30001}} </TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> R. Remmert, "Funktionentheorie" , '''II''' , Springer (1991) {{MR|1150243}} {{ZBL|0748.30002}} </TD></TR></table> | + | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> H.L. Royden, [[Royden, "Real analysis"|"Real analysis"]], Macmillan (1968) pp. Chapt. 5</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> E. Hewitt, K.R. Stromberg, "Real and abstract analysis" , Springer (1965) {{MR|0188387}} {{ZBL|0137.03202}} </TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> N. Dunford, J.T. Schwartz, "Linear operators. General theory" , '''1''' , Interscience (1958) {{MR|0117523}} {{ZBL|}} </TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> H. Federer, "Geometric measure theory" , Springer (1969) pp. 60; 62; 71; 108 {{MR|0257325}} {{ZBL|0176.00801}} </TD></TR> |
+ | <TR><TD valign="top">[1a]</TD> <TD valign="top"> G. Vitali, ''Rend. R. Istor. Lombardo (2)'' , '''36''' (1903) pp. 772–774</TD></TR><TR><TD valign="top">[1b]</TD> <TD valign="top"> G. Vitali, ''Ann. Mat. Pura Appl. (3)'' , '''10''' (1904) pp. 73</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A.I. Markushevich, "Theory of functions of a complex variable" , '''1''' , Chelsea (1977) pp. Chapt.4 (Translated from Russian) {{MR|0444912}} {{ZBL|0357.30002}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> P. Montel, "Leçons sur les familles normales de fonctions analytiques et leurs applications" , Gauthier-Villars (1927) {{MR|}} {{ZBL|53.0303.02}} </TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> R.C. Gunning, H. Rossi, "Analytic functions of several complex variables" , Prentice-Hall (1965) {{MR|0180696}} {{ZBL|0141.08601}} </TD></TR> | ||
+ | <TR><TD valign="top">[a1]</TD> <TD valign="top"> C. Carathéodory, "Theory of functions of a complex variable" , '''1''' , Chelsea, reprint (1978) (Translated from German) {{MR|1570711}} {{MR|0064861}} {{MR|0060009}} {{ZBL|0056.06703}} {{ZBL|0055.30301}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> J.B. Conway, "Functions of one complex variable" , Springer (1973) {{MR|0447532}} {{ZBL|0277.30001}} </TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> R. Remmert, "Funktionentheorie" , '''II''' , Springer (1991) {{MR|1150243}} {{ZBL|0748.30002}} </TD></TR></table> |
Latest revision as of 05:43, 26 April 2024
Vitali's covering theorem. If a system of closed sets $\mathcal F$ is a Vitali covering (see below) of a set $A\subset\mathbb R^n$, it is possible to extract from $\mathcal F$ an at most countable sequence of pairwise disjoint sets $\{F_i\}$, $i=1,2,\dots$, such that
\begin{equation}
m_e\left[A\setminus\bigcup_{i=1}^{\infty}F_i\right]=0,
\end{equation}
where $m_e$ is the outer Lebesgue measure in $\mathbb R^n$.
A Vitali covering of a set $A\subset\mathbb R^n$ is a system $\mathcal E$ of subsets of $\mathbb R^n$ such that for any $x\in A$ there exists a sequence $\{E_n\}$ from $\mathcal E$ satisfying the following conditions: \begin{equation} x\in\bigcap_{n=1}^{\infty}E_n; \end{equation} \begin{equation} \delta_n = \delta(E_n) \to 0\quad \text{ if } n\to\infty, \end{equation} where $\delta(E_n)$ is the diameter of $E_n$; and \begin{equation} \inf_n\left[\sup\frac{m_e(E_n)}{m(I)}\right]=\alpha>0, \end{equation} where the supremum is taken over all $I$ (cubes with faces parallel to the coordinate planes and containing $E_n$), this supremum is said to be the regularity parameter of $E_n$.
The theorem was demonstrated by G. Vitali [1] for the case when $\mathcal F$ consists of cubes with faces parallel to the coordinate planes. Vitali's theorem is valid as stated if $\mathcal F$ is a Vitali covering of the set $A$ and not for a covering in the ordinary sense. This condition must always be satisfied, even if $\mathcal F$ is a system of segments and if to each $x\in A$ there corresponds a sequence $\{F_n\}$ from $\mathcal F$ with centres at $x$ and with diameters tending to zero.
References
[1] | G. Vitali, "Sui gruppi di punti e sulle funzioni di variabili reali" Atti Accad. Sci. Torino , 43 (1908) pp. 75–92 Zbl 39.0101.05 |
[2] | S. Saks, "Theory of the integral" , Hafner (1952) (Translated from French) MR0167578 Zbl 1196.28001 Zbl 0017.30004 Zbl 63.0183.05 |
Comments
For $ n =1 $, Vitali's covering theorem is a main ingredient in the proof of the Lebesgue theorem that a monotone function has a finite derivative almost everywhere [a2].
There is another theorem that goes by the name Vitali convergence theorem. Let $ (X,\ {\mathcal A} ,\ \mu ) $ be a measure space, $ 1 \leq p < \infty $, $ (f _{n} ) _{n=1} ^ \infty $ a sequence in $ L _{p} (X) $, and $ f $ an $ {\mathcal A} $- measurable function which is finite $ \mu $- almost-everywhere and such that $ f _{n} \rightarrow f $ $ \mu $- almost-everywhere. Then $ f \in L _{p} (X) $ and $ \| f - f _{n} \| _{p} \rightarrow 0 $ if and only if: 1) for each $ \epsilon > 0 $ there is a set $ A _ \epsilon \in {\mathcal A} $ such that $ \mu (A _ \epsilon ) < \infty $ and $ \int _{ X \setminus A _ \epsilon} | f _{n} | ^{p} \ d \mu < \epsilon $ for all $ n \in \mathbf N $; and 2) $ \lim\limits _{ {\mu (E) \rightarrow 0}} \ \int _{E} | f _{n} | ^{p} \ d \mu = 0 $ uniformly in $ n $. See [a2].
At least two other useful theorems bear Vitali's name. The Vitali theorem generalizing the Lebesgue's dominated convergence theorem for what is called an equi-integrable or uniformly integrable family of functions. There is also the Vitali–Hahn–Saks theorem, which asserts that a pointwise limit of a sequence of ( $ \sigma $- additive) measures on a $ \sigma $- field is still a ( $ \sigma $- additive) measure.
Vitali's theorem on the uniform convergence of a sequence of holomorphic functions. Let a sequence $ \{ f _{n} (z) \} $
of holomorphic functions on a domain $ D $
of the complex $ z $-
plane be uniformly bounded (cf. Uniform boundedness) and converge on a set $ E $
with a limit point in $ D $;
the sequence $ \{ f _{n} (z) \} $
will then converge uniformly inside $ D $
towards a holomorphic function, i.e. will converge uniformly on every compact set $ K \subset D $.
The theorem was obtained by G. Vitali .
The compactness principle makes it possible to strengthen Vitali's theorem by replacing the condition of uniform boundedness on $ D $ by the condition of uniform boundedness on every compact set $ K \subset D $. There also exist Vitali theorems for normal families (cf. Normal family) of meromorphic functions, for families of quasi-analytic functions and for families of holomorphic functions of several complex variables; in the last case, however, additional limitations must be imposed on the set $ E \subset D \subset \mathbf C ^{n} $, for example, $ E $ must contain interior points in $ \mathbf C ^{n} $[3], [4].
E.D. Solomentsev
References
[a1] | H.L. Royden, "Real analysis", Macmillan (1968) pp. Chapt. 5 |
[a2] | E. Hewitt, K.R. Stromberg, "Real and abstract analysis" , Springer (1965) MR0188387 Zbl 0137.03202 |
[a3] | N. Dunford, J.T. Schwartz, "Linear operators. General theory" , 1 , Interscience (1958) MR0117523 |
[a4] | H. Federer, "Geometric measure theory" , Springer (1969) pp. 60; 62; 71; 108 MR0257325 Zbl 0176.00801 |
[1a] | G. Vitali, Rend. R. Istor. Lombardo (2) , 36 (1903) pp. 772–774 |
[1b] | G. Vitali, Ann. Mat. Pura Appl. (3) , 10 (1904) pp. 73 |
[2] | A.I. Markushevich, "Theory of functions of a complex variable" , 1 , Chelsea (1977) pp. Chapt.4 (Translated from Russian) MR0444912 Zbl 0357.30002 |
[3] | P. Montel, "Leçons sur les familles normales de fonctions analytiques et leurs applications" , Gauthier-Villars (1927) Zbl 53.0303.02 |
[4] | R.C. Gunning, H. Rossi, "Analytic functions of several complex variables" , Prentice-Hall (1965) MR0180696 Zbl 0141.08601 |
[a1] | C. Carathéodory, "Theory of functions of a complex variable" , 1 , Chelsea, reprint (1978) (Translated from German) MR1570711 MR0064861 MR0060009 Zbl 0056.06703 Zbl 0055.30301 |
[a2] | J.B. Conway, "Functions of one complex variable" , Springer (1973) MR0447532 Zbl 0277.30001 |
[a3] | R. Remmert, "Funktionentheorie" , II , Springer (1991) MR1150243 Zbl 0748.30002 |
Vitali theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Vitali_theorem&oldid=28282