Difference between revisions of "Gauss variational problem"
(Importing text file) |
(details) |
||
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
− | A variational problem, first studied by C.F. Gauss (1840) [[#References|[1]]], which may be formulated in modern terms as follows. Let | + | {{TEX|done}} |
+ | A variational problem, first studied by [[Gauss, Carl Friedrich|C.F. Gauss]] (1840) [[#References|[1]]], which may be formulated in modern terms as follows. Let $\mu$ be a positive measure in a Euclidean space $\mathbf R^n$, $n\geq3$, of finite energy (cf. [[Energy of measures|Energy of measures]]), and let | ||
− | + | $$U^\mu(x)=\int\frac{1}{|x-y|^{n-2}}d\mu(y)$$ | |
− | define the [[ | + | define the [[Newton potential]] $U^\mu$ of $\mu$. Out of all measures $\lambda$ with compact support $K\subset\mathbf R^n$ it is required to find a measure $\mu_0$ giving the minimum of the integral |
− | + | $$\int(U^\lambda-2U^\mu)d\lambda,$$ | |
− | which is the scalar product ( | + | which is the scalar product ($\lambda-2\mu,\lambda$) in the pre-Hilbert space of measures of finite energy. |
− | The importance of the Gauss variational problem consists in the fact that the equilibrium measure (cf. [[Robin problem|Robin problem]]) may be obtained as a solution of the Gauss variational problem for a certain choice of | + | The importance of the Gauss variational problem consists in the fact that the equilibrium measure (cf. [[Robin problem|Robin problem]]) may be obtained as a solution of the Gauss variational problem for a certain choice of $\mu$; for example, $\mu$ may be taken to be a homogeneous mass distribution over a sphere with centre in the coordinate origin that includes $K$. |
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> C.F. Gauss, "Allgemeine Lehrsätze in Beziehung auf die im verkehrten Verhältnisse des Quadrats der Entfernung wirkenden Anziehung- und Abstössungs-Kräfte" , ''Werke'' , '''5''' , K. Gesellschaft Wissenschaft. Göttingen (1877) pp. 195–242</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> N.S. [N.S. Landkov] Landkof, "Foundations of modern potential theory" , Springer (1972) (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> M. Brélot, "Eléments de la théorie classique du potentiel" , Sorbonne Univ. Centre Doc. Univ. , Paris (1959)</TD></TR></table> | + | <table> |
+ | <TR><TD valign="top">[1]</TD> <TD valign="top"> C.F. Gauss, "Allgemeine Lehrsätze in Beziehung auf die im verkehrten Verhältnisse des Quadrats der Entfernung wirkenden Anziehung- und Abstössungs-Kräfte" , ''Werke'' , '''5''' , K. Gesellschaft Wissenschaft. Göttingen (1877) pp. 195–242</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> N.S. [N.S. Landkov] Landkof, "Foundations of modern potential theory" , Springer (1972) (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> M. Brélot, "Eléments de la théorie classique du potentiel" , Sorbonne Univ. Centre Doc. Univ. , Paris (1959)</TD></TR> | ||
+ | </table> | ||
====Comments==== | ====Comments==== | ||
− | The measure | + | The measure $\mu_0$ is the projection of $\mu$ on the convex cone of all positive measures $\lambda$, of finite energy, and with support contained in $K$. See also [[#References|[a1]]], Chapt. I.XIII for a treatment of this subject. |
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> J.L. Doob, "Classical potential theory and its probabilistic counterpart" , Springer (1984)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> J.L. Doob, "Classical potential theory and its probabilistic counterpart" , Springer (1984)</TD></TR></table> |
Latest revision as of 12:40, 20 April 2024
A variational problem, first studied by C.F. Gauss (1840) [1], which may be formulated in modern terms as follows. Let $\mu$ be a positive measure in a Euclidean space $\mathbf R^n$, $n\geq3$, of finite energy (cf. Energy of measures), and let
$$U^\mu(x)=\int\frac{1}{|x-y|^{n-2}}d\mu(y)$$
define the Newton potential $U^\mu$ of $\mu$. Out of all measures $\lambda$ with compact support $K\subset\mathbf R^n$ it is required to find a measure $\mu_0$ giving the minimum of the integral
$$\int(U^\lambda-2U^\mu)d\lambda,$$
which is the scalar product ($\lambda-2\mu,\lambda$) in the pre-Hilbert space of measures of finite energy.
The importance of the Gauss variational problem consists in the fact that the equilibrium measure (cf. Robin problem) may be obtained as a solution of the Gauss variational problem for a certain choice of $\mu$; for example, $\mu$ may be taken to be a homogeneous mass distribution over a sphere with centre in the coordinate origin that includes $K$.
References
[1] | C.F. Gauss, "Allgemeine Lehrsätze in Beziehung auf die im verkehrten Verhältnisse des Quadrats der Entfernung wirkenden Anziehung- und Abstössungs-Kräfte" , Werke , 5 , K. Gesellschaft Wissenschaft. Göttingen (1877) pp. 195–242 |
[2] | N.S. [N.S. Landkov] Landkof, "Foundations of modern potential theory" , Springer (1972) (Translated from Russian) |
[3] | M. Brélot, "Eléments de la théorie classique du potentiel" , Sorbonne Univ. Centre Doc. Univ. , Paris (1959) |
Comments
The measure $\mu_0$ is the projection of $\mu$ on the convex cone of all positive measures $\lambda$, of finite energy, and with support contained in $K$. See also [a1], Chapt. I.XIII for a treatment of this subject.
References
[a1] | J.L. Doob, "Classical potential theory and its probabilistic counterpart" , Springer (1984) |
Gauss variational problem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Gauss_variational_problem&oldid=16406