Namespaces
Variants
Actions

Difference between revisions of "Bochner almost-periodic functions"

From Encyclopedia of Mathematics
Jump to: navigation, search
(TeX)
(gather refs)
 
Line 1: Line 1:
 
{{TEX|done}}
 
{{TEX|done}}
Functions equivalent to [[Bohr almost-periodic functions|Bohr almost-periodic functions]]; defined by S. Bochner [[#References|[1]]]. A function $f(x)$ which is continuous in the interval $(-\infty,\infty)$ is said to be a Bochner almost-periodic function if the family of functions $\{f(x+h)\colon-\infty<h<\infty\}$ is compact in the sense of uniform convergence on $(-\infty,\infty)$, i.e. if it is possible to select from each infinite sequence $f(x+h_k)$, $k=1,2,\dots,$ a subsequence which converges uniformly to $f(x)$ on $(-\infty,\infty)$. Bochner's definition is extensively employed in the theory of almost-periodic functions; in particular, it serves as the starting point in abstract generalizations of the concept of almost-periodicity.
+
Functions equivalent to [[Bohr almost-periodic functions]]; defined by S. Bochner [[#References|[1]]]. A function $f(x)$ which is continuous in the interval $(-\infty,\infty)$ is said to be a Bochner almost-periodic function if the family of functions $\{f(x+h)\colon-\infty<h<\infty\}$ is compact in the sense of uniform convergence on $(-\infty,\infty)$, ''i.e.'' if it is possible to select from each infinite sequence $f(x+h_k)$, $k=1,2,\dots,$ a subsequence which converges uniformly to $f(x)$ on $(-\infty,\infty)$. Bochner's definition is extensively employed in the theory of almost-periodic functions; in particular, it serves as the starting point in abstract generalizations of the concept of almost-periodicity.
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> S. Bochner,   "Beiträge zur Theorie der fastperiodischen Funktionen I, Funktionen einer Variablen"  ''Math. Ann.'' , '''96'''  (1927)  pp. 119–147</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> B.M. Levitan,   "Almost-periodic functions" , Moscow  (1953)  (In Russian)</TD></TR></table>
+
<table>
 
+
<TR><TD valign="top">[1]</TD> <TD valign="top"> S. Bochner, "Beiträge zur Theorie der fastperiodischen Funktionen I, Funktionen einer Variablen"  ''Math. Ann.'' , '''96'''  (1927)  pp. 119–147</TD></TR>
 
+
<TR><TD valign="top">[2]</TD> <TD valign="top"> B.M. Levitan, "Almost-periodic functions" , Moscow  (1953)  (In Russian)</TD></TR>
 
+
<TR><TD valign="top">[a1]</TD> <TD valign="top"> W. Maak, "Fastperiodische Funktionen" , Springer  (1967)</TD></TR>
====Comments====
+
<TR><TD valign="top">[a2]</TD> <TD valign="top"> L. Amerio,  G. Prouse, "Almost-periodic functions and functional equations" , v. Nostrand  (1971)</TD></TR>
 
+
</table>
 
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> W. Maak,   "Fastperiodische Funktionen" , Springer  (1967)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> L. Amerio,  G. Prouse,   "Almost-periodic functions and functional equations" , v. Nostrand  (1971)</TD></TR></table>
 

Latest revision as of 18:58, 15 April 2024

Functions equivalent to Bohr almost-periodic functions; defined by S. Bochner [1]. A function $f(x)$ which is continuous in the interval $(-\infty,\infty)$ is said to be a Bochner almost-periodic function if the family of functions $\{f(x+h)\colon-\infty<h<\infty\}$ is compact in the sense of uniform convergence on $(-\infty,\infty)$, i.e. if it is possible to select from each infinite sequence $f(x+h_k)$, $k=1,2,\dots,$ a subsequence which converges uniformly to $f(x)$ on $(-\infty,\infty)$. Bochner's definition is extensively employed in the theory of almost-periodic functions; in particular, it serves as the starting point in abstract generalizations of the concept of almost-periodicity.

References

[1] S. Bochner, "Beiträge zur Theorie der fastperiodischen Funktionen I, Funktionen einer Variablen" Math. Ann. , 96 (1927) pp. 119–147
[2] B.M. Levitan, "Almost-periodic functions" , Moscow (1953) (In Russian)
[a1] W. Maak, "Fastperiodische Funktionen" , Springer (1967)
[a2] L. Amerio, G. Prouse, "Almost-periodic functions and functional equations" , v. Nostrand (1971)
How to Cite This Entry:
Bochner almost-periodic functions. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Bochner_almost-periodic_functions&oldid=33122
This article was adapted from an original article by E.A. Bredikhina (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article