|
|
(One intermediate revision by one other user not shown) |
Line 1: |
Line 1: |
− | A sequence of functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013770/a0137701.png" /> such that | + | {{TEX|done}} |
| + | A sequence of functions $\{\phi_n(x)\}$ such that |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013770/a0137702.png" /></td> </tr></table>
| + | $$\phi_{n+1}(x)=o(\phi_n(x)),\quad x\to x_0,\quad x\in M,$$ |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013770/a0137703.png" /> is a limit point of the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013770/a0137704.png" /> (finite or infinite). If the nature of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013770/a0137705.png" /> is clear from the context, then one simply writes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013770/a0137706.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013770/a0137707.png" /> is an asymptotic sequence and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013770/a0137708.png" /> is a function defined on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013770/a0137709.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013770/a01377010.png" /> will also be an asymptotic sequence. | + | where $x_0$ is a limit point of the set $M$ (finite or infinite). If the nature of $M$ is clear from the context, then one simply writes $x\to x_0$. If $\{\phi_n(x)\}$ is an asymptotic sequence and $\psi(x)$ is a function defined on $M$, then $\{\psi(x)\phi_n(x)\}$ will also be an asymptotic sequence. |
| | | |
| Examples of asymptotic sequences: | | Examples of asymptotic sequences: |
| | | |
− | 1) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013770/a01377011.png" />; | + | 1) $\{(x-x_0)^n\},x\to x_0$; |
| | | |
− | 2) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013770/a01377012.png" />; | + | 2) $\{x^{-n}\},x\to\infty$; |
| | | |
− | 3) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013770/a01377013.png" />; | + | 3) $\{e^xx^{-n}\},x\to\infty$; |
| | | |
− | 4) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013770/a01377014.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013770/a01377015.png" /> is an unbounded domain in the complex plane. Asymptotic sequences such as 1), 2) and 4) are called asymptotic power sequences. | + | 4) $\{z^{-n}\},z\to\infty,z\in D$, where $D$ is an unbounded domain in the complex plane. |
− | | |
− | | |
− | | |
− | ====Comments====
| |
| | | |
| + | Asymptotic sequences such as 1), 2) and 4) are called asymptotic power sequences. |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> N.G. de Bruijn, "Asymptotic methods in analysis" , Dover, reprint (1981)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> A. Erdélyi, "Asymptotic expansions" , Dover, reprint (1956)</TD></TR></table> | + | <table> |
| + | <TR><TD valign="top">[a1]</TD> <TD valign="top"> N.G. de Bruijn, "Asymptotic methods in analysis" , Dover, reprint (1981)</TD></TR> |
| + | <TR><TD valign="top">[a2]</TD> <TD valign="top"> A. Erdélyi, "Asymptotic expansions" , Dover, reprint (1956)</TD></TR> |
| + | </table> |
Latest revision as of 19:31, 13 April 2024
A sequence of functions $\{\phi_n(x)\}$ such that
$$\phi_{n+1}(x)=o(\phi_n(x)),\quad x\to x_0,\quad x\in M,$$
where $x_0$ is a limit point of the set $M$ (finite or infinite). If the nature of $M$ is clear from the context, then one simply writes $x\to x_0$. If $\{\phi_n(x)\}$ is an asymptotic sequence and $\psi(x)$ is a function defined on $M$, then $\{\psi(x)\phi_n(x)\}$ will also be an asymptotic sequence.
Examples of asymptotic sequences:
1) $\{(x-x_0)^n\},x\to x_0$;
2) $\{x^{-n}\},x\to\infty$;
3) $\{e^xx^{-n}\},x\to\infty$;
4) $\{z^{-n}\},z\to\infty,z\in D$, where $D$ is an unbounded domain in the complex plane.
Asymptotic sequences such as 1), 2) and 4) are called asymptotic power sequences.
References
[a1] | N.G. de Bruijn, "Asymptotic methods in analysis" , Dover, reprint (1981) |
[a2] | A. Erdélyi, "Asymptotic expansions" , Dover, reprint (1956) |
How to Cite This Entry:
Asymptotic sequence. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Asymptotic_sequence&oldid=11934
This article was adapted from an original article by M.I. Shabunin (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098.
See original article