Namespaces
Variants
Actions

Difference between revisions of "Additive divisor problem"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (tex done)
m (gather refs)
 
Line 35: Line 35:
 
and an arbitrary positive integer  $  k _{2} $
 
and an arbitrary positive integer  $  k _{2} $
 
was solved using the [[Dispersion method|dispersion method]] of Yu.V. Linnik [[#References|[4]]].
 
was solved using the [[Dispersion method|dispersion method]] of Yu.V. Linnik [[#References|[4]]].
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A.E. Ingham,  "Some asymptotic formulae in the theory of numbers"  ''J. London Math. Soc. (1)'' , '''2'''  (1927)  pp. 202–208</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  T. Esterman,  "On the representations of a number as the sum of two products"  ''Proc. London Math. Soc. (2)'' , '''31'''  (1930)  pp. 123–133</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  C. Hooly,  "An asymptotic formula in the theory of numbers"  ''Proc. London Math. Soc. (3)'' , '''7'''  (1957)  pp. 396–413</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  Yu.V. Linnik,  "The dispersion method in binary additive problems" , Amer. Math. Soc.  (1963)  (Translated from Russian)</TD></TR></table>
 
  
 
====Comments====
 
====Comments====
The function $ \tau _{2} (m) = \tau (m) $
+
The function $\tau_{2} (m) = \tau (m)$ is also denoted by $d (m)$
is also denoted by $ d (m) $
+
or $\sigma_{0} (m)$, cf. [[#References|[a1]]], Sect. 16.7.
or $ \sigma _{0} (m) $,  
 
cf. [[#References|[a1]]], Sect. 16.7.
 
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> G.H. Hardy,   E.M. Wright,   "An introduction to the theory of numbers" , Clarendon Press  (1979)</TD></TR></table>
+
<table>
 +
<TR><TD valign="top">[1]</TD> <TD valign="top"> A.E. Ingham, "Some asymptotic formulae in the theory of numbers"  ''J. London Math. Soc. (1)'' , '''2'''  (1927)  pp. 202–208</TD></TR>
 +
<TR><TD valign="top">[2]</TD> <TD valign="top"> T. Esterman, "On the representations of a number as the sum of two products"  ''Proc. London Math. Soc. (2)'' , '''31'''  (1930)  pp. 123–133</TD></TR>
 +
<TR><TD valign="top">[3]</TD> <TD valign="top"> C. Hooly, "An asymptotic formula in the theory of numbers"  ''Proc. London Math. Soc. (3)'' , '''7'''  (1957)  pp. 396–413</TD></TR>
 +
<TR><TD valign="top">[4]</TD> <TD valign="top"> Yu.V. Linnik, "The dispersion method in binary additive problems" , Amer. Math. Soc.  (1963)  (Translated from Russian)</TD></TR>
 +
<TR><TD valign="top">[a1]</TD> <TD valign="top"> G.H. Hardy, E.M. Wright, "An introduction to the theory of numbers" , Clarendon Press  (1979)</TD></TR>
 +
</table>

Latest revision as of 07:19, 16 March 2024


The problem of finding asymptotic values for sums of the form:

$$ \tag{1} \left . { {\sum _ {m \leq n} \tau _{ {k _ 1}} ( m ) \tau _{ {k _ 2}} ( m + a ) ,} \atop {\sum _ {m < n}\tau _{ {k _ 1}} ( m ) \tau _{ {k _ 2}} ( n - m ) ,}} \right \} $$

where $ \tau _{k} (m) $ is the number of different factorizations of an integer $ m $ in $ k $ factors, counted according to multiplicity. Here $ k _{1} $ and $ k _{2} $ are integers $ \geq 2 $, $ a $ is a fixed integer different from zero and $ n $ is a sufficiently large number. In particular $ \tau _{2} (m) = \tau (m) $ is the number of divisors of the number $ m $. Sums of the form (1) express the number of solutions of the equations

$$ \tag{2} x _{1} \dots x _{ {k _ 2}} \ - \ y _{1} \dots y _{ {k _ 1}} \ = \ a , $$

$$ \tag{3} x _{1} \dots x _{ {k _ 1}} \ + \ y _{1} \dots y _{ {k _ 2}} \ = \ n , $$

respectively. Particular cases of the additive divisor problem ( $ k _{1} = k _{2} =2 $, $ k _{1} = 2 $ and $ k _{2} = 3 $) are considered in [1][3]. The additive divisor problem with $ k _{1} = 2 $ and an arbitrary positive integer $ k _{2} $ was solved using the dispersion method of Yu.V. Linnik [4].

Comments

The function $\tau_{2} (m) = \tau (m)$ is also denoted by $d (m)$ or $\sigma_{0} (m)$, cf. [a1], Sect. 16.7.

References

[1] A.E. Ingham, "Some asymptotic formulae in the theory of numbers" J. London Math. Soc. (1) , 2 (1927) pp. 202–208
[2] T. Esterman, "On the representations of a number as the sum of two products" Proc. London Math. Soc. (2) , 31 (1930) pp. 123–133
[3] C. Hooly, "An asymptotic formula in the theory of numbers" Proc. London Math. Soc. (3) , 7 (1957) pp. 396–413
[4] Yu.V. Linnik, "The dispersion method in binary additive problems" , Amer. Math. Soc. (1963) (Translated from Russian)
[a1] G.H. Hardy, E.M. Wright, "An introduction to the theory of numbers" , Clarendon Press (1979)
How to Cite This Entry:
Additive divisor problem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Additive_divisor_problem&oldid=44382
This article was adapted from an original article by B.M. Bredikhin (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article