Difference between revisions of "Kronrod-Patterson quadrature formula"
Ulf Rehmann (talk | contribs) m (moved Kronrod–Patterson quadrature formula to Kronrod-Patterson quadrature formula: ascii title) |
m (tex done) |
||
(2 intermediate revisions by one other user not shown) | |||
Line 1: | Line 1: | ||
+ | |||
+ | <!--This article has been texified automatically. Since there was no Nroff source code for this article, | ||
+ | the semi-automatic procedure described at https://encyclopediaofmath.org/wiki/User:Maximilian_Janisch/latexlist | ||
+ | was used. | ||
+ | If the TeX and formula formatting is correct and if all png images have been replaced by TeX code, please remove this message and the {{TEX|semi-auto}} category. | ||
+ | |||
+ | Out of 34 formulas, 32 were replaced by TEX code.--> | ||
+ | |||
+ | {{TEX|semi-auto}}{{TEX|done}} | ||
A [[Quadrature formula of highest algebraic accuracy|quadrature formula of highest algebraic accuracy]] of the type | A [[Quadrature formula of highest algebraic accuracy|quadrature formula of highest algebraic accuracy]] of the type | ||
− | + | \begin{equation*} \int _ { a } ^ { b } p ( x ) f ( x ) d x \approx Q _ { 2 ^ {i} ( n + 1 ) - 1 } [ f ] = \end{equation*} | |
− | + | \begin{equation*} = \sum _ { \nu = 1 } ^ { n } \alpha _ { i \nu }\, f ( x _ { \nu } ) + \sum _ { \rho = 1 } ^ { i } \sum _ { \nu = 1 } ^ { 2 ^ { \rho - 1 } ( n + 1 ) } \beta _ { i \rho \nu }\, f ( \xi _ { \nu } ^ { \rho } ), \end{equation*} | |
− | + | $i \geq 1$, where $x _ { 1 } , \ldots , x _ { n }$ are the nodes of a [[Gauss quadrature formula|Gauss quadrature formula]] and the nodes of $Q _ { 2 ^{ i - 1} ( n + 1 ) - 1 }$ are fixed in the construction of $Q _ { 2 ^{ i} ( n + 1 ) - 1 }$ [[#References|[a2]]]. Nested sequences of Kronrod–Patterson formulas are used for the numerical approximation of definite integrals with practical error estimate, in particular in the non-adaptive routines of the numerical integration package QUADPACK [[#References|[a4]]] and in the standard numerical software libraries. | |
− | The algebraic accuracy of | + | The algebraic accuracy of $Q _ { 2 ^{ i} ( n + 1 ) - 1 }$ is at least $3.2 ^ { i - 1 } ( n + 1 ) - 2$. The free nodes $\xi _ { 1 } ^ { i } , \ldots , \xi _ { 2 ^ { i - 1 } ( n + 1 ) } ^ { i } $ of $Q _ { 2 ^{ i} ( n + 1 ) - 1 }$ are precisely the zeros of the polynomial $E _ { 2 ^{i-1}(n+1)} ^ { i } $ which satisfies |
− | + | $$ | |
+ | \int_a^b p(x) P_n(x) \prod_{\rho=1}^i E_{2^{\rho-1}(n+1)}^\rho (x) x^k \, dx = 0, | ||
+ | $$ | ||
− | + | \begin{equation*} k = 0 , \ldots , 2 ^ { i - 1 } ( n + 1 ) - 1, \end{equation*} | |
− | where | + | where $\{ P _ { n } \}$ is the system of [[Orthogonal polynomials|orthogonal polynomials]] associated with $p$, $Q _ { 2 n+1} $ is the [[Gauss–Kronrod quadrature formula|Gauss–Kronrod quadrature formula]], and $E _ { n + 1 } ^ { 1 }$ is the Stieltjes polynomial (cf. [[Stieltjes polynomials|Stieltjes polynomials]]). For $[ a , b ] = [ - 1,1 ]$ and $p ( x ) = \sqrt { 1 - x ^ { 2 } }$, $P _ { n } = U _ { n }$, the Chebyshev polynomial of the second kind (cf. [[Chebyshev polynomials|Chebyshev polynomials]]), and $E ^{ i } _ { 2 ^{ i - 1} ( n + 1 ) } = T _ { 2 ^{ i - 1} ( n + 1 ) }$, the Chebyshev polynomial of the first kind. In this case, all Kronrod–Patterson formulas are Gauss quadrature formulas (cf. [[Gauss quadrature formula|Gauss quadrature formula]]). Hence, the algebraic accuracy of $Q _ { 2 ^{ i} ( n + 1 ) - 1 }$ is $2 ^ { i + 1 } ( n + 1 ) - 3$, the nodes of $Q _ { 2 ^{ i - 1} ( n + 1 ) - 1 }$ and $Q _ { 2 ^{ i} ( n + 1 ) - 1 }$ interlace and the formulas have positive weights. Similar properties are known for the more general Bernstein–Szegö weight functions $p ( x ) = \sqrt { 1 - x ^ { 2 } } / \rho _ { m } ( x )$, where $\rho _ { m }$ is a polynomial of degree $m$ which is positive on $[ a , b ] = [ - 1,1 ]$, see [[#References|[a3]]]. |
− | Only very little is known for | + | Only very little is known for $p \equiv 1$, which is the most important case for practical calculations. Tables of sequences of Kronrod–Patterson formulas have been given in [[#References|[a2]]], [[#References|[a4]]]. A numerical investigation for $ i = 2$ and Jacobi weight functions $p ( x ) = ( 1 - x ) ^ { \alpha } ( 1 + x ) ^ { \beta }$, $\alpha , \beta > - 1$, can be found in [[#References|[a5]]]. |
====References==== | ====References==== | ||
− | <table>< | + | <table><tr><td valign="top">[a1]</td> <td valign="top"> P.J. Davis, P. Rabinowitz, "Methods of numerical integration" , Acad. Press (1984) (Edition: Second)</td></tr><tr><td valign="top">[a2]</td> <td valign="top"> T.N.L. Patterson, "The optimum addition of points to quadrature formulae" ''Math. Comput.'' , '''22''' (1968) pp. 847–856</td></tr><tr><td valign="top">[a3]</td> <td valign="top"> F. Peherstorfer, "Weight functions admitting repeated positive Kronrod quadrature" ''BIT'' , '''30''' (1990) pp. 241–251</td></tr><tr><td valign="top">[a4]</td> <td valign="top"> R. Piessens, et al., "QUADPACK: a subroutine package in automatic integration" , Springer (1983)</td></tr><tr><td valign="top">[a5]</td> <td valign="top"> P. Rabinowitz, S. Elhay, J. Kautsky, "Empirical mathematics: the first Patterson extension of Gauss–Kronrod rules" ''Internat. J. Computer Math.'' , '''36''' (1990) pp. 119–129</td></tr></table> |
Latest revision as of 06:08, 15 February 2024
A quadrature formula of highest algebraic accuracy of the type
\begin{equation*} \int _ { a } ^ { b } p ( x ) f ( x ) d x \approx Q _ { 2 ^ {i} ( n + 1 ) - 1 } [ f ] = \end{equation*}
\begin{equation*} = \sum _ { \nu = 1 } ^ { n } \alpha _ { i \nu }\, f ( x _ { \nu } ) + \sum _ { \rho = 1 } ^ { i } \sum _ { \nu = 1 } ^ { 2 ^ { \rho - 1 } ( n + 1 ) } \beta _ { i \rho \nu }\, f ( \xi _ { \nu } ^ { \rho } ), \end{equation*}
$i \geq 1$, where $x _ { 1 } , \ldots , x _ { n }$ are the nodes of a Gauss quadrature formula and the nodes of $Q _ { 2 ^{ i - 1} ( n + 1 ) - 1 }$ are fixed in the construction of $Q _ { 2 ^{ i} ( n + 1 ) - 1 }$ [a2]. Nested sequences of Kronrod–Patterson formulas are used for the numerical approximation of definite integrals with practical error estimate, in particular in the non-adaptive routines of the numerical integration package QUADPACK [a4] and in the standard numerical software libraries.
The algebraic accuracy of $Q _ { 2 ^{ i} ( n + 1 ) - 1 }$ is at least $3.2 ^ { i - 1 } ( n + 1 ) - 2$. The free nodes $\xi _ { 1 } ^ { i } , \ldots , \xi _ { 2 ^ { i - 1 } ( n + 1 ) } ^ { i } $ of $Q _ { 2 ^{ i} ( n + 1 ) - 1 }$ are precisely the zeros of the polynomial $E _ { 2 ^{i-1}(n+1)} ^ { i } $ which satisfies
$$ \int_a^b p(x) P_n(x) \prod_{\rho=1}^i E_{2^{\rho-1}(n+1)}^\rho (x) x^k \, dx = 0, $$
\begin{equation*} k = 0 , \ldots , 2 ^ { i - 1 } ( n + 1 ) - 1, \end{equation*}
where $\{ P _ { n } \}$ is the system of orthogonal polynomials associated with $p$, $Q _ { 2 n+1} $ is the Gauss–Kronrod quadrature formula, and $E _ { n + 1 } ^ { 1 }$ is the Stieltjes polynomial (cf. Stieltjes polynomials). For $[ a , b ] = [ - 1,1 ]$ and $p ( x ) = \sqrt { 1 - x ^ { 2 } }$, $P _ { n } = U _ { n }$, the Chebyshev polynomial of the second kind (cf. Chebyshev polynomials), and $E ^{ i } _ { 2 ^{ i - 1} ( n + 1 ) } = T _ { 2 ^{ i - 1} ( n + 1 ) }$, the Chebyshev polynomial of the first kind. In this case, all Kronrod–Patterson formulas are Gauss quadrature formulas (cf. Gauss quadrature formula). Hence, the algebraic accuracy of $Q _ { 2 ^{ i} ( n + 1 ) - 1 }$ is $2 ^ { i + 1 } ( n + 1 ) - 3$, the nodes of $Q _ { 2 ^{ i - 1} ( n + 1 ) - 1 }$ and $Q _ { 2 ^{ i} ( n + 1 ) - 1 }$ interlace and the formulas have positive weights. Similar properties are known for the more general Bernstein–Szegö weight functions $p ( x ) = \sqrt { 1 - x ^ { 2 } } / \rho _ { m } ( x )$, where $\rho _ { m }$ is a polynomial of degree $m$ which is positive on $[ a , b ] = [ - 1,1 ]$, see [a3].
Only very little is known for $p \equiv 1$, which is the most important case for practical calculations. Tables of sequences of Kronrod–Patterson formulas have been given in [a2], [a4]. A numerical investigation for $ i = 2$ and Jacobi weight functions $p ( x ) = ( 1 - x ) ^ { \alpha } ( 1 + x ) ^ { \beta }$, $\alpha , \beta > - 1$, can be found in [a5].
References
[a1] | P.J. Davis, P. Rabinowitz, "Methods of numerical integration" , Acad. Press (1984) (Edition: Second) |
[a2] | T.N.L. Patterson, "The optimum addition of points to quadrature formulae" Math. Comput. , 22 (1968) pp. 847–856 |
[a3] | F. Peherstorfer, "Weight functions admitting repeated positive Kronrod quadrature" BIT , 30 (1990) pp. 241–251 |
[a4] | R. Piessens, et al., "QUADPACK: a subroutine package in automatic integration" , Springer (1983) |
[a5] | P. Rabinowitz, S. Elhay, J. Kautsky, "Empirical mathematics: the first Patterson extension of Gauss–Kronrod rules" Internat. J. Computer Math. , 36 (1990) pp. 119–129 |
Kronrod-Patterson quadrature formula. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Kronrod-Patterson_quadrature_formula&oldid=22671