|
|
(One intermediate revision by one other user not shown) |
Line 1: |
Line 1: |
− | A [[Topological space|topological space]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110120/b1101201.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110120/b1101203.png" />-dimensional if it is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110120/b1101204.png" />-space (cf. also [[Separation axiom|Separation axiom]]) with a base of [[clopen]] sets (a set is called clopen if it is both open and closed). The Banaschewski compactification [[#References|[a1]]], [[#References|[a2]]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110120/b1101205.png" />, denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110120/b1101206.png" />, is the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110120/b1101207.png" />-dimensional analogue of the [[Stone–Čech compactification|Stone–Čech compactification]] of a [[Tikhonov space|Tikhonov space]]. It can be obtained as the [[Stone space|Stone space]] of the [[Boolean algebra|Boolean algebra]] of clopen subsets.
| |
| | | |
− | The Banaschewski compactification is also a special case of the [[Wallman compactification|Wallman compactification]] [[#References|[a4]]] (as generalized by N.A. Shanin, [[#References|[a3]]]). A fairly general approach subsuming the above-mentioned compactifications is as follows.
| + | A [[topological space]] $X$ is $0$-dimensional if it is a $T_1$-space (cf. also [[Separation axiom|Separation axiom]]) with a base of [[clopen]] sets (a set is called clopen if it is both open and closed). The Banaschewski compactification [[#References|[a1]]], [[#References|[a2]]] of $X$, denoted by $\beta_0 X$, is the $0$-dimensional analogue of the [[Stone–Čech compactification]] of a [[Tikhonov space]]. It can be obtained as the [[Stone space]] of the [[Boolean algebra]] of clopen subsets. |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110120/b1101208.png" /> be an arbitrary non-empty set and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110120/b1101209.png" /> a [[Lattice|lattice]] of subsets of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110120/b11012010.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110120/b11012011.png" />. Assume that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110120/b11012012.png" /> is disjunctive and separating, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110120/b11012013.png" /> be the [[Algebra|algebra]] generated by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110120/b11012014.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110120/b11012015.png" /> be the set of non-trivial zero-one valued finitely additive measures on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110120/b11012016.png" />, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110120/b11012017.png" /> be the set of elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110120/b11012018.png" /> that are <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110120/b11012019.png" />-regular, i.e.,
| + | The Banaschewski compactification is also a special case of the [[Wallman compactification]] [[#References|[a4]]] (as generalized by N.A. Shanin, [[#References|[a3]]]). A fairly general approach subsuming the above-mentioned compactifications is as follows. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110120/b11012020.png" /></td> </tr></table>
| + | Let $X$ be an arbitrary non-empty set and $\mathcal{L}$ a [[Lattice|lattice]] of subsets of $X$ such that $\emptyset$. Assume that $\mathcal{L}$ is disjunctive and separating, let $\mathcal{A}(\mathcal{L})$ be the [[Algebra|algebra]] generated by $\mathcal{L}$, let $\mathcal{A}(\mathcal{L})$ be the set of non-trivial zero-one valued finitely additive measures on $\mathcal{A}(\mathcal{L})$, and let $I_R(\mathcal{L})$ be the set of elements $\mu\in I(\mathcal{L})$ that are $\mathcal{L}$-regular, i.e., |
| | | |
− | One can identify <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110120/b11012021.png" /> with the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110120/b11012022.png" />-prime filters and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110120/b11012023.png" /> with the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110120/b11012024.png" />-ultrafilters (cf. also [[Filter|Filter]]; [[Ultrafilter|Ultrafilter]]).
| + | $$ |
| + | \mu(A) = \sup \{ \mu(L) : L\subset A, L \in \mathcal{L}\}, \quad A \in \mathcal{A}(\mathcal{L}). |
| + | $$ |
| | | |
− | Next, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110120/b11012025.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110120/b11012026.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110120/b11012027.png" /> is a lattice isomorphism from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110120/b11012028.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110120/b11012029.png" />. Take <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110120/b11012030.png" /> as a base for the closed sets of a topology <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110120/b11012031.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110120/b11012032.png" />. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110120/b11012033.png" /> is a compact <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110120/b11012034.png" />-space and it is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110120/b11012035.png" /> (cf. [[Hausdorff space|Hausdorff space]]) if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110120/b11012036.png" /> is a normal lattice. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110120/b11012037.png" /> can be densely imbedded in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110120/b11012038.png" /> by the mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110120/b11012039.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110120/b11012040.png" /> is the Dirac measure concentrated at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110120/b11012041.png" /> (cf. also [[Dirac delta-function|Dirac delta-function]]). The mapping is a [[Homeomorphism|homeomorphism]] if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110120/b11012042.png" /> is given the topology of closed sets with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110120/b11012043.png" /> as base for the closed sets.
| + | One can identify $I(\mathcal{L})$ with the $\mathcal{L}$-prime filters and $I_R(\mathcal{L})$ with the $\mathcal{L}$-ultrafilters (cf. also [[Filter|Filter]]; [[Ultrafilter|Ultrafilter]]). |
| | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110120/b11012044.png" /> is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110120/b11012045.png" />-space and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110120/b11012046.png" /> is the lattice of closed sets, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110120/b11012047.png" /> becomes the usual Wallman compactification <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110120/b11012048.png" />.
| + | Next, let $V(A) = \{\mu \in I_R(\mathcal{L}) : \mu(A) = 1\}$, where $A \in \mathcal{A}(\mathcal{L})$; $V$ is a lattice isomorphism from $\mathcal{L}$ to $V(\mathcal{L} = \{ V(L) : L \in \mathcal{L}\}$. Take $V(\mathcal{L})$ as a base for the closed sets of a topology $\tau V(\mathcal{L})$ on $I_R(\mathcal{L})$. Then $(I_R(\mathcal{L}), \tau V(\mathcal{L}))$ is a compact $T_1$-space and it is $T_2$ (cf. [[Hausdorff space|Hausdorff space]]) if and only if $\mathcal{L}$ is a normal lattice. $X$ can be densely imbedded in $I_R(\mathcal{L})$ by the mapping $x \to \mu_x$, where $\mu$ is the Dirac measure concentrated at $x$ (cf. also [[Dirac delta-function|Dirac delta-function]]). The mapping is a [[Homeomorphism|homeomorphism]] if $X$ is given the topology of closed sets with $\mathcal{L}$ as base for the closed sets. |
| | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110120/b11012049.png" /> is a Tikhonov space and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110120/b11012050.png" /> is the lattice of zero sets, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110120/b11012051.png" /> becomes the Stone–Čech compactification <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110120/b11012052.png" />. | + | If $X$ is a $T_1$-space and $\mathcal{L}$ is the lattice of closed sets, then $(I_R(\mathcal{L}), \tau V(\mathcal{L}))$ becomes the usual Wallman compactification $\omega X$. |
| | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110120/b11012053.png" /> is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110120/b11012054.png" />-dimensional <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110120/b11012055.png" />-space and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110120/b11012056.png" /> is the lattice of clopen sets, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110120/b11012057.png" /> becomes the Banaschewski compactification <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110120/b11012058.png" />. | + | If $X$ is a Tikhonov space and $\mathcal{L}$ is the lattice of zero sets, then $(I_R(\mathcal{L}), \tau V(\mathcal{L}))$ becomes the Stone–Čech compactification $\beta X$. |
| | | |
− | <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110120/b11012059.png" /> if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110120/b11012060.png" /> is a [[Normal space|normal space]]; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110120/b11012061.png" /> if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110120/b11012062.png" /> is strongly <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110120/b11012064.png" />-dimensional (i.e., the clopen sets separate the zero sets).
| + | If $X$ is a $0$-dimensional $T_1$-space and $\mathcal{L}$ is the lattice of clopen sets, then $(I_R(\mathcal{L}), \tau V(\mathcal{L}))$ becomes the Banaschewski compactification $\beta_0 X$. |
| + | |
| + | $\omega X = \beta X$ if and only if $X$ is a [[Normal space|normal space]]; $\beta X = \beta_0 X$ if and only if $X$ is strongly $0$-dimensional (i.e., the clopen sets separate the zero sets). |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> B. Banaschewski, "Über nulldimensional Räume" ''Math. Nachr.'' , '''13''' (1955) pp. 129–140</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> B. Banaschewski, "On Wallman's method of compactification" ''Math. Nachr.'' , '''27''' (1963) pp. 105–114</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> N.A. Shanin, "On the theory of bicompact extensions of topological spaces" ''Dokl. Aka. Nauk SSSR'' , '''38''' (1943) pp. 154–156 (In Russian)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> H. Wallman, "Lattices and topological spaces" ''Ann. Math.'' , '''39''' (1938) pp. 112–126</TD></TR></table> | | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> B. Banaschewski, "Über nulldimensional Räume" ''Math. Nachr.'' , '''13''' (1955) pp. 129–140</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> B. Banaschewski, "On Wallman's method of compactification" ''Math. Nachr.'' , '''27''' (1963) pp. 105–114</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> N.A. Shanin, "On the theory of bicompact extensions of topological spaces" ''Dokl. Aka. Nauk SSSR'' , '''38''' (1943) pp. 154–156 (In Russian)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> H. Wallman, "Lattices and topological spaces" ''Ann. Math.'' , '''39''' (1938) pp. 112–126</TD></TR></table> |
| + | |
| + | {{TEX|done}} |
A topological space $X$ is $0$-dimensional if it is a $T_1$-space (cf. also Separation axiom) with a base of clopen sets (a set is called clopen if it is both open and closed). The Banaschewski compactification [a1], [a2] of $X$, denoted by $\beta_0 X$, is the $0$-dimensional analogue of the Stone–Čech compactification of a Tikhonov space. It can be obtained as the Stone space of the Boolean algebra of clopen subsets.
The Banaschewski compactification is also a special case of the Wallman compactification [a4] (as generalized by N.A. Shanin, [a3]). A fairly general approach subsuming the above-mentioned compactifications is as follows.
Let $X$ be an arbitrary non-empty set and $\mathcal{L}$ a lattice of subsets of $X$ such that $\emptyset$. Assume that $\mathcal{L}$ is disjunctive and separating, let $\mathcal{A}(\mathcal{L})$ be the algebra generated by $\mathcal{L}$, let $\mathcal{A}(\mathcal{L})$ be the set of non-trivial zero-one valued finitely additive measures on $\mathcal{A}(\mathcal{L})$, and let $I_R(\mathcal{L})$ be the set of elements $\mu\in I(\mathcal{L})$ that are $\mathcal{L}$-regular, i.e.,
$$
\mu(A) = \sup \{ \mu(L) : L\subset A, L \in \mathcal{L}\}, \quad A \in \mathcal{A}(\mathcal{L}).
$$
One can identify $I(\mathcal{L})$ with the $\mathcal{L}$-prime filters and $I_R(\mathcal{L})$ with the $\mathcal{L}$-ultrafilters (cf. also Filter; Ultrafilter).
Next, let $V(A) = \{\mu \in I_R(\mathcal{L}) : \mu(A) = 1\}$, where $A \in \mathcal{A}(\mathcal{L})$; $V$ is a lattice isomorphism from $\mathcal{L}$ to $V(\mathcal{L} = \{ V(L) : L \in \mathcal{L}\}$. Take $V(\mathcal{L})$ as a base for the closed sets of a topology $\tau V(\mathcal{L})$ on $I_R(\mathcal{L})$. Then $(I_R(\mathcal{L}), \tau V(\mathcal{L}))$ is a compact $T_1$-space and it is $T_2$ (cf. Hausdorff space) if and only if $\mathcal{L}$ is a normal lattice. $X$ can be densely imbedded in $I_R(\mathcal{L})$ by the mapping $x \to \mu_x$, where $\mu$ is the Dirac measure concentrated at $x$ (cf. also Dirac delta-function). The mapping is a homeomorphism if $X$ is given the topology of closed sets with $\mathcal{L}$ as base for the closed sets.
If $X$ is a $T_1$-space and $\mathcal{L}$ is the lattice of closed sets, then $(I_R(\mathcal{L}), \tau V(\mathcal{L}))$ becomes the usual Wallman compactification $\omega X$.
If $X$ is a Tikhonov space and $\mathcal{L}$ is the lattice of zero sets, then $(I_R(\mathcal{L}), \tau V(\mathcal{L}))$ becomes the Stone–Čech compactification $\beta X$.
If $X$ is a $0$-dimensional $T_1$-space and $\mathcal{L}$ is the lattice of clopen sets, then $(I_R(\mathcal{L}), \tau V(\mathcal{L}))$ becomes the Banaschewski compactification $\beta_0 X$.
$\omega X = \beta X$ if and only if $X$ is a normal space; $\beta X = \beta_0 X$ if and only if $X$ is strongly $0$-dimensional (i.e., the clopen sets separate the zero sets).
References
[a1] | B. Banaschewski, "Über nulldimensional Räume" Math. Nachr. , 13 (1955) pp. 129–140 |
[a2] | B. Banaschewski, "On Wallman's method of compactification" Math. Nachr. , 27 (1963) pp. 105–114 |
[a3] | N.A. Shanin, "On the theory of bicompact extensions of topological spaces" Dokl. Aka. Nauk SSSR , 38 (1943) pp. 154–156 (In Russian) |
[a4] | H. Wallman, "Lattices and topological spaces" Ann. Math. , 39 (1938) pp. 112–126 |