Namespaces
Variants
Actions

Difference between revisions of "Krein condition"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (latex details)
 
(3 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 +
<!--This article has been texified automatically. Since there was no Nroff source code for this article,
 +
the semi-automatic procedure described at https://encyclopediaofmath.org/wiki/User:Maximilian_Janisch/latexlist
 +
was used.
 +
If the TeX and formula formatting is correct, please remove this message and the {{TEX|semi-auto}} category.
 +
 +
Out of 67 formulas, 67 were replaced by TEX code.-->
 +
 +
{{TEX|semi-auto}}{{TEX|done}}
 
A condition in terms of the logarithmic normalized integral
 
A condition in terms of the logarithmic normalized integral
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120120/k1201201.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a1)</td></tr></table>
+
\begin{equation} \tag{a1} K : = \int \frac { - \operatorname { ln } f ( . ) } { 1 + x ^ { 2 } } d x, \end{equation}
  
used to derive non-uniqueness or uniqueness of the [[Moment problem|moment problem]] for absolutely continuous probability distributions (cf. also [[Absolute continuity|Absolute continuity]]; [[Probability distribution|Probability distribution]]). In (a1), <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120120/k1201202.png" /> is the density function of some [[Distribution function|distribution function]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120120/k1201203.png" /> having all moments <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120120/k1201204.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120120/k1201205.png" />, finite, the integral is taken over the support of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120120/k1201206.png" /> and the argument of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120120/k1201207.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120120/k1201208.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120120/k1201209.png" />, depending on this support.
+
used to derive non-uniqueness or uniqueness of the [[Moment problem|moment problem]] for absolutely continuous probability distributions (cf. also [[Absolute continuity|Absolute continuity]]; [[Probability distribution|Probability distribution]]). In (a1), $f$ is the density function of some [[Distribution function|distribution function]] $F$ having all moments $\alpha _ { k } = \int x ^ { k } d F ( x )$, $k = 1,2 , \dots$, finite, the integral is taken over the support of $F$ and the argument of $f ( . )$ is $x$ or $x ^ { 2 }$, depending on this support.
  
The general question of interest is: Does the moment sequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120120/k12012010.png" /> determine <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120120/k12012011.png" /> uniquely? If the answer is  "yes" , one says that the moment problem has a unique solution, or that the distribution function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120120/k12012012.png" /> is M-determinate. Otherwise, the moment problem has a non-unique solution, or that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120120/k12012013.png" /> is M-indeterminate.
+
The general question of interest is: Does the moment sequence $\{ \alpha _ { k } : k = 1,2 , \ldots \}$ determine $F$ uniquely? If the answer is  "yes" , one says that the moment problem has a unique solution, or that the distribution function $F$ is M-determinate. Otherwise, the moment problem has a non-unique solution, or that $F$ is M-indeterminate.
  
It is essential to note that the quantity <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120120/k12012014.png" /> defined in (a1) may  "be equal to"  <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120120/k12012015.png" />.
+
It is essential to note that the quantity $K$ defined in (a1) may  "be equal to"  $+ \infty$.
  
 
==Hamburger moment problem.==
 
==Hamburger moment problem.==
In this problem, the support of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120120/k12012016.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120120/k12012017.png" />, the density <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120120/k12012018.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120120/k12012019.png" /> and all moments <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120120/k12012020.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120120/k12012021.png" />, are finite. The values of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120120/k12012022.png" /> belong to the interval <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120120/k12012023.png" />.
+
In this problem, the support of $F$ is $( - \infty , \infty )$, the density $f ( x ) > 0$ for all $x \in ( - \infty , \infty )$ and all moments $\alpha _ { k } = \int _ { - \infty } ^ { \infty } x ^ { k } f ( x ) d x$, $k = 1,2 , \dots$, are finite. The values of $K$ belong to the interval $[ - 1 , + \infty ]$.
  
 
For this problem the following Krein conditions are used:
 
For this problem the following Krein conditions are used:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120120/k12012024.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a2)</td></tr></table>
+
\begin{equation} \tag{a2} \int _ { - \infty } ^ { \infty } \frac { - \operatorname { ln } f ( x ) } { 1 + x ^ { 2 } } d x < \infty; \end{equation}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120120/k12012025.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a3)</td></tr></table>
+
\begin{equation} \tag{a3} \int _ { - \infty } ^ { \infty } \frac { - \operatorname { ln } f ( x ) } { 1 + x ^ { 2 } } d x = \infty. \end{equation}
  
 
The following is true:
 
The following is true:
  
if (a2) holds, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120120/k12012026.png" /> is M-indeterminate, i.e. the moment problem has a non-unique solution;
+
if (a2) holds, then $F$ is M-indeterminate, i.e. the moment problem has a non-unique solution;
  
if, in addition to (a3), the Lin condition below is satisfied, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120120/k12012027.png" /> is M-determinate, i.e. the moment problem has a unique solution.
+
if, in addition to (a3), the Lin condition below is satisfied, then $F$ is M-determinate, i.e. the moment problem has a unique solution.
  
Here, the following Lin condition is used: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120120/k12012028.png" /> is symmetric and differentiable, and for some <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120120/k12012029.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120120/k12012030.png" />,
+
Here, the following Lin condition is used: $f$ is symmetric and differentiable, and for some $x _ { 0 } > 0$ and $x \geq x_0$,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120120/k12012031.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a4)</td></tr></table>
+
\begin{equation} \tag{a4} \frac { - x f ^ { \prime } ( x ) } { f ( x ) } \nearrow \infty , \quad x \rightarrow \infty. \end{equation}
  
 
==Stieltjes moment problem.==
 
==Stieltjes moment problem.==
In this problem, the support of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120120/k12012032.png" /> is the real half-line <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120120/k12012033.png" />, the density <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120120/k12012034.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120120/k12012035.png" />, and all moments <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120120/k12012036.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120120/k12012037.png" />, are finite. In this case the values of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120120/k12012038.png" /> belong to the interval <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120120/k12012039.png" />.
+
In this problem, the support of $F$ is the real half-line $( 0 , \infty )$, the density $f ( x ) > 0$ for all $x \in ( 0 , \infty )$, and all moments $\alpha _ { k } = \int _ { 0 } ^ { \infty } x ^ { k } f ( x ) d x$, $k = 1,2 , \dots$, are finite. In this case the values of $K$ belong to the interval $[ - 1 / 2 , + \infty ]$.
  
 
In this case one uses the following Krein conditions
 
In this case one uses the following Krein conditions
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120120/k12012040.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a5)</td></tr></table>
+
\begin{equation} \tag{a5} \int _ { 0 } ^ { \infty } \frac { - \operatorname { ln } f ( x ^ { 2 } ) } { 1 + x ^ { 2 } } d x < \infty; \end{equation}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120120/k12012041.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a6)</td></tr></table>
+
\begin{equation} \tag{a6} \int _ { 0 } ^ { \infty } \frac { - \operatorname { ln } f ( x ^ { 2 } ) } { 1 + x ^ { 2 } } d x = \infty$. \end{equation}
  
 
The following is true:
 
The following is true:
  
if (a5) holds, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120120/k12012042.png" /> is M-indeterminate.
+
if (a5) holds, then $F$ is M-indeterminate.
  
if, in addition to (a6), the Lin condition below is satisfied, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120120/k12012043.png" /> is M-determinate. Here, the Lin condition is that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120120/k12012044.png" /> be differentiable and that for some <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120120/k12012045.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120120/k12012046.png" />,
+
if, in addition to (a6), the Lin condition below is satisfied, then $F$ is M-determinate. Here, the Lin condition is that $f$ be differentiable and that for some $x _ { 0 } > 0$ and $x \geq x_0$,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120120/k12012047.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a7)</td></tr></table>
+
\begin{equation} \tag{a7} \frac { - x f ^ { \prime } ( x ) } { f ( x ) } \nearrow \infty , \quad x \rightarrow \infty. \end{equation}
  
 
From these four assertions one can derive several interesting results. In particular, one can easily show that the [[Log-normal distribution|log-normal distribution]] is M-indeterminate. This fact was discovered by Th.J. Stieltjes in 1894 (in other terms; see [[#References|[a1]]], [[#References|[a3]]]), and was later given in a probabilistic setting by others, see e.g. [[#References|[a4]]].
 
From these four assertions one can derive several interesting results. In particular, one can easily show that the [[Log-normal distribution|log-normal distribution]] is M-indeterminate. This fact was discovered by Th.J. Stieltjes in 1894 (in other terms; see [[#References|[a1]]], [[#References|[a3]]]), and was later given in a probabilistic setting by others, see e.g. [[#References|[a4]]].
  
 
==Examples in probability theory.==
 
==Examples in probability theory.==
Suppose <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120120/k12012048.png" /> is a [[Random variable|random variable]] with a [[Normal distribution|normal distribution]]. Then:
+
Suppose $X$ is a [[Random variable|random variable]] with a [[Normal distribution|normal distribution]]. Then:
  
the distribution of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120120/k12012049.png" /> is M-indeterminate for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120120/k12012050.png" />;
+
the distribution of $X ^ { 2 n + 1 }$ is M-indeterminate for all $n = 1,2 , \dots$;
  
the distribution of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120120/k12012051.png" /> is M-determinate for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120120/k12012052.png" />;
+
the distribution of $| X | ^ { r }$ is M-determinate for all $r \in ( 0,4 ]$;
  
the distribution of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120120/k12012053.png" /> is M-indeterminate for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120120/k12012054.png" />. For details (direct constructions and using the Carleman criterion), see [[#References|[a2]]]. A proof of this result based on the Krein or Krein–Lin technique is given in [[#References|[a12]]].
+
the distribution of $| X | ^ { r }$ is M-indeterminate for all $r > 4$. For details (direct constructions and using the Carleman criterion), see [[#References|[a2]]]. A proof of this result based on the Krein or Krein–Lin technique is given in [[#References|[a12]]].
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120120/k12012055.png" /> be a random variable whose distribution is M-determinate. Using the Krein–Lin techniques, one can easily answer questions like: For which values of the real parameter <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120120/k12012056.png" /> does the distribution of the power <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120120/k12012057.png" /> and/or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120120/k12012058.png" /> become M-indeterminate?
+
Let $X$ be a random variable whose distribution is M-determinate. Using the Krein–Lin techniques, one can easily answer questions like: For which values of the real parameter $r$ does the distribution of the power $X ^ { r }$ and/or $| X | ^ { r }$ become M-indeterminate?
  
Suppose the random variable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120120/k12012059.png" /> has:a [[Normal distribution|normal distribution]]; an [[Exponential distribution|exponential distribution]]; a [[Gamma-distribution|gamma-distribution]]; a [[Logistic distribution|logistic distribution]]; or an inverse Gaussian distribution (cf. also [[Gauss law|Gauss law]]). Then in each of these cases the distribution of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120120/k12012060.png" /> is M-determinate, while already <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120120/k12012061.png" /> has an M-indeterminate distribution, i.e. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120120/k12012062.png" /> is the minimal integer power of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120120/k12012063.png" /> destroying the determinacy of the distribution of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120120/k12012064.png" />. For details see [[#References|[a12]]].
+
Suppose the random variable $X$ has:a [[Normal distribution|normal distribution]]; an [[Exponential distribution|exponential distribution]]; a [[Gamma-distribution|gamma-distribution]]; a [[Logistic distribution|logistic distribution]]; or an inverse Gaussian distribution (cf. also [[Gauss law|Gauss law]]). Then in each of these cases the distribution of $X ^ { 2 }$ is M-determinate, while already $X ^ { 3 }$ has an M-indeterminate distribution, i.e. $3$ is the minimal integer power of $X$ destroying the determinacy of the distribution of $X$. For details see [[#References|[a12]]].
  
 
A more general problem is to describe classes of functions of random variables (not just powers) preserving or destroying the determinacy of the probability distributions of the given variables.
 
A more general problem is to describe classes of functions of random variables (not just powers) preserving or destroying the determinacy of the probability distributions of the given variables.
Line 65: Line 73:
 
There is a more general form of the Krein condition, which requires instead of (a2) that
 
There is a more general form of the Krein condition, which requires instead of (a2) that
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120120/k12012065.png" /></td> </tr></table>
+
\begin{equation*} \int _ { - \infty } ^ { \infty } \left[ \frac { - \operatorname { ln } F _ { \text{ac} } ^ { \prime } ( x ) } { 1 + x ^ { 2 } } \right] d x < \infty , \end{equation*}
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120120/k12012066.png" /> is the absolutely continuous part of the distribution function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k120/k120120/k12012067.png" />, see [[#References|[a8]]].
+
where $F _ { \text{a.c.} }$ is the absolutely continuous part of the distribution function $F$, see [[#References|[a8]]].
  
 
The Krein condition, in conjunction with the Lin condition, is used for absolutely continuous distributions whose densities are positive in both Hamburger and Stieltjes problems. [[#References|[a7]]] contains an extension of the Krein condition for indeterminacy as well as a discrete analogue applicable to distributions concentrated on the integers.
 
The Krein condition, in conjunction with the Lin condition, is used for absolutely continuous distributions whose densities are positive in both Hamburger and Stieltjes problems. [[#References|[a7]]] contains an extension of the Krein condition for indeterminacy as well as a discrete analogue applicable to distributions concentrated on the integers.
Line 76: Line 84:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  N.I. Akhiezer,  "The classical moment problem" , Hafner  (1965)  (In Russian)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  C. Berg,  "The cube of a normal distribution is indeterminate"  ''Ann. of Probab.'' , '''16'''  (1988)  pp. 910–913</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  C. Berg,  "Indeterminate moment problems and the theory of entire functions"  ''J. Comput. Appl. Math.'' , '''65'''  (1995)  pp. 27–55</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  C.C. Heyde,  "On a property of the lognormal distribution"  ''J. R. Statist. Soc. Ser. B'' , '''29'''  (1963)  pp. 392–393</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  M.G. Krein,  "On one extrapolation problem of A.N. Kolmogorov"  ''Dokl. Akad. Nauk SSSR'' , '''46''' :  8  (1944)  pp. 339–342  (In Russian)</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top">  G.D. Lin,  "On the moment problem"  ''Statist. Probab. Lett.'' , '''35'''  (1997)  pp. 85–90</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top">  H.L. Pedersen,  "On Krein's theorem for indeterminacy of the classical moment problem"  ''J. Approx. Th.'' , '''95'''  (1998)  pp. 90–100</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top">  Yu.V. Prohorov,  Yu.A. Rozanov,  "Probability theory" , Springer  (1969)  (In Russian)</TD></TR><TR><TD valign="top">[a9]</TD> <TD valign="top">  B. Simon,  "The classical moment problem as a self-adjoint finite difference operator"  ''Adv. Math.'' , '''137'''  (1998)  pp. 82–203</TD></TR><TR><TD valign="top">[a10]</TD> <TD valign="top">  E.V. Slud,  "The moment problem for polynomial forms of normal random variables"  ''Ann. of Probab.'' , '''21'''  (1993)  pp. 2200–2214</TD></TR><TR><TD valign="top">[a11]</TD> <TD valign="top">  J. Stoyanov,  "Counterexamples in probability" , Wiley  (1997)  (Edition: Second)</TD></TR><TR><TD valign="top">[a12]</TD> <TD valign="top"> J. Stoyanov,   "Krein condition in probabilistic moment problems" ''Bernoulli'' , '''to appear'''  (1999/2000)</TD></TR></table>
+
<table><tr><td valign="top">[a1]</td> <td valign="top">  N.I. Akhiezer,  "The classical moment problem" , Hafner  (1965)  (In Russian)</td></tr>
 +
<tr><td valign="top">[a2]</td> <td valign="top">  C. Berg,  "The cube of a normal distribution is indeterminate"  ''Ann. of Probab.'' , '''16'''  (1988)  pp. 910–913</td></tr><tr><td valign="top">[a3]</td> <td valign="top">  C. Berg,  "Indeterminate moment problems and the theory of entire functions"  ''J. Comput. Appl. Math.'' , '''65'''  (1995)  pp. 27–55</td></tr><tr><td valign="top">[a4]</td> <td valign="top">  C.C. Heyde,  "On a property of the lognormal distribution"  ''J. R. Statist. Soc. Ser. B'' , '''29'''  (1963)  pp. 392–393</td></tr><tr><td valign="top">[a5]</td> <td valign="top">  M.G. Krein,  "On one extrapolation problem of A.N. Kolmogorov"  ''Dokl. Akad. Nauk SSSR'' , '''46''' :  8  (1944)  pp. 339–342  (In Russian)</td></tr><tr><td valign="top">[a6]</td> <td valign="top">  G.D. Lin,  "On the moment problem"  ''Statist. Probab. Lett.'' , '''35'''  (1997)  pp. 85–90</td></tr><tr><td valign="top">[a7]</td> <td valign="top">  H.L. Pedersen,  "On Krein's theorem for indeterminacy of the classical moment problem"  ''J. Approx. Th.'' , '''95'''  (1998)  pp. 90–100</td></tr><tr><td valign="top">[a8]</td> <td valign="top">  Yu.V. Prohorov,  Yu.A. Rozanov,  "Probability theory" , Springer  (1969)  (In Russian)</td></tr><tr><td valign="top">[a9]</td> <td valign="top">  B. Simon,  "The classical moment problem as a self-adjoint finite difference operator"  ''Adv. Math.'' , '''137'''  (1998)  pp. 82–203</td></tr><tr><td valign="top">[a10]</td> <td valign="top">  E.V. Slud,  "The moment problem for polynomial forms of normal random variables"  ''Ann. of Probab.'' , '''21'''  (1993)  pp. 2200–2214</td></tr><tr><td valign="top">[a11]</td> <td valign="top">  J. Stoyanov,  "Counterexamples in probability" , Wiley  (1997)  (Edition: Second)</td></tr>
 +
<tr><td valign="top">[a12]</td> <td valign="top"> J. Stoyanov, "Krein condition in probabilistic moment problems" ''Bernoulli'' 6, No. 5, 939-949 (2000) {{ZBL|0971.60017}}</td></tr>
 +
</table>

Latest revision as of 07:41, 4 February 2024

A condition in terms of the logarithmic normalized integral

\begin{equation} \tag{a1} K : = \int \frac { - \operatorname { ln } f ( . ) } { 1 + x ^ { 2 } } d x, \end{equation}

used to derive non-uniqueness or uniqueness of the moment problem for absolutely continuous probability distributions (cf. also Absolute continuity; Probability distribution). In (a1), $f$ is the density function of some distribution function $F$ having all moments $\alpha _ { k } = \int x ^ { k } d F ( x )$, $k = 1,2 , \dots$, finite, the integral is taken over the support of $F$ and the argument of $f ( . )$ is $x$ or $x ^ { 2 }$, depending on this support.

The general question of interest is: Does the moment sequence $\{ \alpha _ { k } : k = 1,2 , \ldots \}$ determine $F$ uniquely? If the answer is "yes" , one says that the moment problem has a unique solution, or that the distribution function $F$ is M-determinate. Otherwise, the moment problem has a non-unique solution, or that $F$ is M-indeterminate.

It is essential to note that the quantity $K$ defined in (a1) may "be equal to" $+ \infty$.

Hamburger moment problem.

In this problem, the support of $F$ is $( - \infty , \infty )$, the density $f ( x ) > 0$ for all $x \in ( - \infty , \infty )$ and all moments $\alpha _ { k } = \int _ { - \infty } ^ { \infty } x ^ { k } f ( x ) d x$, $k = 1,2 , \dots$, are finite. The values of $K$ belong to the interval $[ - 1 , + \infty ]$.

For this problem the following Krein conditions are used:

\begin{equation} \tag{a2} \int _ { - \infty } ^ { \infty } \frac { - \operatorname { ln } f ( x ) } { 1 + x ^ { 2 } } d x < \infty; \end{equation}

\begin{equation} \tag{a3} \int _ { - \infty } ^ { \infty } \frac { - \operatorname { ln } f ( x ) } { 1 + x ^ { 2 } } d x = \infty. \end{equation}

The following is true:

if (a2) holds, then $F$ is M-indeterminate, i.e. the moment problem has a non-unique solution;

if, in addition to (a3), the Lin condition below is satisfied, then $F$ is M-determinate, i.e. the moment problem has a unique solution.

Here, the following Lin condition is used: $f$ is symmetric and differentiable, and for some $x _ { 0 } > 0$ and $x \geq x_0$,

\begin{equation} \tag{a4} \frac { - x f ^ { \prime } ( x ) } { f ( x ) } \nearrow \infty , \quad x \rightarrow \infty. \end{equation}

Stieltjes moment problem.

In this problem, the support of $F$ is the real half-line $( 0 , \infty )$, the density $f ( x ) > 0$ for all $x \in ( 0 , \infty )$, and all moments $\alpha _ { k } = \int _ { 0 } ^ { \infty } x ^ { k } f ( x ) d x$, $k = 1,2 , \dots$, are finite. In this case the values of $K$ belong to the interval $[ - 1 / 2 , + \infty ]$.

In this case one uses the following Krein conditions

\begin{equation} \tag{a5} \int _ { 0 } ^ { \infty } \frac { - \operatorname { ln } f ( x ^ { 2 } ) } { 1 + x ^ { 2 } } d x < \infty; \end{equation}

\begin{equation} \tag{a6} \int _ { 0 } ^ { \infty } \frac { - \operatorname { ln } f ( x ^ { 2 } ) } { 1 + x ^ { 2 } } d x = \infty$. \end{equation} The following is true: if (a5) holds, then $F$ is M-indeterminate. if, in addition to (a6), the Lin condition below is satisfied, then $F$ is M-determinate. Here, the Lin condition is that $f$ be differentiable and that for some $x _ { 0 } > 0$ and $x \geq x_0$, \begin{equation} \tag{a7} \frac { - x f ^ { \prime } ( x ) } { f ( x ) } \nearrow \infty , \quad x \rightarrow \infty. \end{equation} From these four assertions one can derive several interesting results. In particular, one can easily show that the [[Log-normal distribution|log-normal distribution]] is M-indeterminate. This fact was discovered by Th.J. Stieltjes in 1894 (in other terms; see [[#References|[a1]]], [[#References|[a3]]]), and was later given in a probabilistic setting by others, see e.g. [[#References|[a4]]]. =='"`UNIQ--h-2--QINU`"'Examples in probability theory.== Suppose $X$ is a [[Random variable|random variable]] with a [[Normal distribution|normal distribution]]. Then: the distribution of $X ^ { 2 n + 1 }$ is M-indeterminate for all $n = 1,2 , \dots$; the distribution of $| X | ^ { r }$ is M-determinate for all $r \in ( 0,4 ]$; the distribution of $| X | ^ { r }$ is M-indeterminate for all $r > 4$. For details (direct constructions and using the Carleman criterion), see [[#References|[a2]]]. A proof of this result based on the Krein or Krein–Lin technique is given in [[#References|[a12]]]. Let $X$ be a random variable whose distribution is M-determinate. Using the Krein–Lin techniques, one can easily answer questions like: For which values of the real parameter $r$ does the distribution of the power $X ^ { r }$ and/or $| X | ^ { r }$ become M-indeterminate? Suppose the random variable $X$ has:a [[Normal distribution|normal distribution]]; an [[Exponential distribution|exponential distribution]]; a [[Gamma-distribution|gamma-distribution]]; a [[Logistic distribution|logistic distribution]]; or an inverse Gaussian distribution (cf. also [[Gauss law|Gauss law]]). Then in each of these cases the distribution of $X ^ { 2 }$ is M-determinate, while already $X ^ { 3 }$ has an M-indeterminate distribution, i.e. $3$ is the minimal integer power of $X$ destroying the determinacy of the distribution of $X$. For details see [[#References|[a12]]]. A more general problem is to describe classes of functions of random variables (not just powers) preserving or destroying the determinacy of the probability distributions of the given variables. =='"`UNIQ--h-3--QINU`"'Generalization.== There is a more general form of the Krein condition, which requires instead of (a2) that \begin{equation*} \int _ { - \infty } ^ { \infty } \left[ \frac { - \operatorname { ln } F _ { \text{ac} } ^ { \prime } ( x ) } { 1 + x ^ { 2 } } \right] d x < \infty , \end{equation*} where $F _ { \text{a.c.} }$ is the absolutely continuous part of the distribution function $F$, see [a8].

The Krein condition, in conjunction with the Lin condition, is used for absolutely continuous distributions whose densities are positive in both Hamburger and Stieltjes problems. [a7] contains an extension of the Krein condition for indeterminacy as well as a discrete analogue applicable to distributions concentrated on the integers.

The Krein condition can also be used for other purely analytic problems, see [a3] and [a9].

The book [a1] is the basic source describing the progress in the moment problem, providing also an intensive discussion on the Krein condition. For distributions on the real line, this condition was introduced by M.G. Krein in 1944, see [a5]. For recent (1998) developments involving the Krein condition see [a3], [a6], [a7], [a9], [a10]. Several applications of the Krein condition are given in [a11] and [a12].

References

[a1] N.I. Akhiezer, "The classical moment problem" , Hafner (1965) (In Russian)
[a2] C. Berg, "The cube of a normal distribution is indeterminate" Ann. of Probab. , 16 (1988) pp. 910–913
[a3] C. Berg, "Indeterminate moment problems and the theory of entire functions" J. Comput. Appl. Math. , 65 (1995) pp. 27–55
[a4] C.C. Heyde, "On a property of the lognormal distribution" J. R. Statist. Soc. Ser. B , 29 (1963) pp. 392–393
[a5] M.G. Krein, "On one extrapolation problem of A.N. Kolmogorov" Dokl. Akad. Nauk SSSR , 46 : 8 (1944) pp. 339–342 (In Russian)
[a6] G.D. Lin, "On the moment problem" Statist. Probab. Lett. , 35 (1997) pp. 85–90
[a7] H.L. Pedersen, "On Krein's theorem for indeterminacy of the classical moment problem" J. Approx. Th. , 95 (1998) pp. 90–100
[a8] Yu.V. Prohorov, Yu.A. Rozanov, "Probability theory" , Springer (1969) (In Russian)
[a9] B. Simon, "The classical moment problem as a self-adjoint finite difference operator" Adv. Math. , 137 (1998) pp. 82–203
[a10] E.V. Slud, "The moment problem for polynomial forms of normal random variables" Ann. of Probab. , 21 (1993) pp. 2200–2214
[a11] J. Stoyanov, "Counterexamples in probability" , Wiley (1997) (Edition: Second)
[a12] J. Stoyanov, "Krein condition in probabilistic moment problems" Bernoulli 6, No. 5, 939-949 (2000) Zbl 0971.60017
How to Cite This Entry:
Krein condition. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Krein_condition&oldid=16214
This article was adapted from an original article by J. Stoyanov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article