Difference between revisions of "Mehler-Fock-transform(2)"
(Importing text file) |
(latex details) |
||
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
+ | <!--This article has been texified automatically. Since there was no Nroff source code for this article, | ||
+ | the semi-automatic procedure described at https://encyclopediaofmath.org/wiki/User:Maximilian_Janisch/latexlist | ||
+ | was used. | ||
+ | If the TeX and formula formatting is correct, please remove this message and the {{TEX|semi-auto}} category. | ||
+ | |||
+ | Out of 33 formulas, 33 were replaced by TEX code.--> | ||
+ | |||
+ | {{TEX|semi-auto}}{{TEX|done}} | ||
''Mehler–Fok transform, Fock–Mehler transform, Fok–Mehler transform'' | ''Mehler–Fok transform, Fock–Mehler transform, Fok–Mehler transform'' | ||
The [[Integral transform|integral transform]] | The [[Integral transform|integral transform]] | ||
− | + | \begin{equation*} F ( \tau ) = \frac { \pi } { 2 } \int _ { 0 } ^ { \infty } P _ { ( i \tau - 1 ) / 2 } ( 2 x ^ { 2 } + 1 ) f ( x ) d x, \end{equation*} | |
− | where | + | where $P _ { \nu } ( z )$ is the associated Legendre function of the first kind (cf. [[Legendre functions|Legendre functions]]). This transform was introduced by F.G. Mehler [[#References|[a1]]]. Some sufficient conditions for the inversion formula was found by V.A. Fock (also spelled V.A. Fok) [[#References|[a2]]] and N.N. Lebedev [[#References|[a3]]]. Some applications of the Mehler–Fock transform are given in [[#References|[a7]]]. |
− | If | + | If $f \in L _ { 2 } ( {\bf R} _ { + } ; x ^ { - 1 } )$, then the integral $F ( \tau )$ converges in the mean square with respect to the norm of the space $L _ { 2 } ( \mathbf{R} _ { + } ; \tau \operatorname { tanh } ( \pi \tau / 2 ) )$ and is an isomorphism between these spaces. Moreover, the [[Parseval equality|Parseval equality]] is true: |
− | + | \begin{equation*} \int _ { 0 } ^ { \infty } | f ( x ) | ^ { 2 } \frac { d x } { x } = \frac { 4 } { \pi ^ { 2 } } \int _ { 0 } ^ { \infty } \tau \operatorname { tanh } ( \frac { \pi \tau } { 2 } ) \left| F ( \tau ) \right| ^ { 2 } d \tau, \end{equation*} | |
as well as the inversion formula | as well as the inversion formula | ||
− | + | \begin{equation*} f ( x ) = \frac { 2 x } { \pi } \times \end{equation*} | |
− | + | \begin{equation*} \times \operatorname { lim } _ { N \rightarrow \infty } \int _ { 1 / N } ^ { N } \tau \operatorname { tanh } \left( \frac { \pi \tau } { 2 } \right) P _ { ( i \tau - 1 ) / 2 } ( 2 x ^ { 2 } + 1 ) F ( \tau ) d \tau , \end{equation*} | |
− | where the limit is taken with respect to the norm in | + | where the limit is taken with respect to the norm in $L _ { 2 } ( {\bf R} _ { + } ; x ^ { - 1 } )$. As is shown, for instance, in [[#References|[a5]]], the Mehler–Fock transform can be represented as the composition of the Hankel transform of index zero (cf. [[Integral transform|Integral transform]]; [[Hardy transform|Hardy transform]]) and the [[Kontorovich-Lebedev-transform(2)|Kontorovich–Lebedev transform]]. |
− | The generalized Mehler–Fock transform and its inverse involve the associated [[Legendre functions|Legendre functions]] of the first kind | + | The generalized Mehler–Fock transform and its inverse involve the associated [[Legendre functions|Legendre functions]] of the first kind $P _ { \nu } ^ { ( k ) } ( x )$ and are accordingly defined as: |
− | + | \begin{equation*} F ( \tau ) = \frac { \tau \operatorname { sinh } ( \pi \tau ) } { \pi } \Gamma \left( \frac { 1 } { 2 } - k + i \tau \right)\times \end{equation*} | |
− | + | \begin{equation*} \times\, \Gamma \left( \frac { 1 } { 2 } - k - i \tau \right) \int _ { 1 } ^ { \infty } P _ { i \tau - 1/2 } ^ { ( k ) } ( x ) f ( x ) d x ,\; f ( x ) = \int _ { 0 } ^ { \infty } P _ { i \tau -1/2} ^ { ( k ) } ( x ) F ( \tau ) d \tau. \end{equation*} | |
− | If | + | If $k = 0$, these formulas reduce by simple substitutions to the ordinary Mehler–Fock transform. For $k = 1 / 2$, $x = \operatorname { cosh } \alpha$ one obtains the [[Fourier cosine transform|Fourier cosine transform]], while $k = - 1 / 2$, $x = \operatorname { cosh } \alpha$ leads to the [[Fourier sine transform|Fourier sine transform]]. |
− | If | + | If $f , g \in L _ { p } ( {\bf R} _ { + } ; x ^ { \nu p - 1 } )$, where $1 / 2 < \nu < 1$, $p \geq 1$, then for the Mehler–Fock transform of type (see [[#References|[a5]]]) |
− | + | \begin{equation*} F ( \tau ) = \int _ { 1 } ^ { \infty } P _ { i \tau - 1 / 2 } ( x ) f ( x ) d x \end{equation*} | |
one can define the convolution operator (cf. also [[Convolution transform|Convolution transform]]) | one can define the convolution operator (cf. also [[Convolution transform|Convolution transform]]) | ||
− | + | \begin{equation*} ( f ^ { * } g ) ( x ) = \int _ { 1 } ^ { \infty } \int _ { 1 } ^ { \infty } S ( x , y , t ) f ( t ) g ( y ) d t d y, \end{equation*} | |
− | where | + | where $x > 1$ and |
− | + | \begin{equation*} S ( x , y , t ) = \sqrt { \frac { 2 \pi } { D } } \operatorname { log } \left( \frac { x + y + t + 1 + \sqrt { D } } { x + y + t + 1 - \sqrt { D } } \right), \end{equation*} | |
− | for | + | for $x , y , t \geq 1$ and $D = x ^ { 2 } + y ^ { 2 } + t ^ { 2 } - 1 - 2 x y t$, where the main values of the square and the logarithm are taken (cf. also [[Logarithmic function|Logarithmic function]]). |
− | The convolution | + | The convolution $( f ^ { * } g ) ( x )$ belongs to the space $L _ { p } ( \mathbf{R} _ { + } ; x ^ { ( 1 - \nu ) p - 1 } )$ and has the following representation: |
− | + | \begin{equation*} ( f ^ { * } g ) ( x ) = \end{equation*} | |
− | + | \begin{equation*} = \pi ^ { 2 } \sqrt { \frac { \pi } { 2 } } \int _ { 0 } ^ { \infty } \tau \frac { \operatorname { sinh } ( \pi \tau ) } { \operatorname { cosh } ^ { 3 } ( \pi \tau ) } P _ { i \tau - 1 / 2 } ( x ) F ( \tau ) G ( \tau ) d \tau, \end{equation*} | |
− | where | + | where $G ( \tau )$ is the Mehler–Fock transform of the function $g$. |
====References==== | ====References==== | ||
− | <table>< | + | <table><tr><td valign="top">[a1]</td> <td valign="top"> F.G. Mehler, "Ueber eine mit den Kugel- und cylinderfunctionen verwandte Function und ihre Anwendung in der Theorie der Electricitätsvertheilung" ''Math. Ann.'' , '''18''' (1881) pp. 161–194</td></tr><tr><td valign="top">[a2]</td> <td valign="top"> V.A. Fock, "On the representation of an arbitrary function by integrals involving the Legendre function with a complex index" ''Dokl. Akad. Nauk SSSR'' , '''39''' : 7 (1943) pp. 279–283 (In Russian)</td></tr><tr><td valign="top">[a3]</td> <td valign="top"> N.N. Lebedev, "The Parseval theorem for the Mehler–Fock integral transform" ''Dokl. Akad. Nauk SSSR'' , '''68''' (1949) pp. 445–448 (In Russian)</td></tr><tr><td valign="top">[a4]</td> <td valign="top"> S.B. Yakubovich, "On the Mehler–Fock integral transform in $L _ { p }$-spaces" ''Extracta Math.'' , '''8''' : 2–3 (1993) pp. 162–164</td></tr><tr><td valign="top">[a5]</td> <td valign="top"> S.B. Yakubovich, "Index transforms" , World Sci. (1996) pp. Chap. 3</td></tr><tr><td valign="top">[a6]</td> <td valign="top"> F. Oberhettinger, T.P. Higgins, "Tables of Lebedev, Mehler and generalized Mehler transforms" , Boeing Sci. Res. Lab. (1961)</td></tr><tr><td valign="top">[a7]</td> <td valign="top"> I.N. Sneddon, "The use of integral transforms" , McGraw-Hill (1972) pp. Chap. 7</td></tr></table> |
Latest revision as of 16:09, 27 January 2024
Mehler–Fok transform, Fock–Mehler transform, Fok–Mehler transform
\begin{equation*} F ( \tau ) = \frac { \pi } { 2 } \int _ { 0 } ^ { \infty } P _ { ( i \tau - 1 ) / 2 } ( 2 x ^ { 2 } + 1 ) f ( x ) d x, \end{equation*}
where $P _ { \nu } ( z )$ is the associated Legendre function of the first kind (cf. Legendre functions). This transform was introduced by F.G. Mehler [a1]. Some sufficient conditions for the inversion formula was found by V.A. Fock (also spelled V.A. Fok) [a2] and N.N. Lebedev [a3]. Some applications of the Mehler–Fock transform are given in [a7].
If $f \in L _ { 2 } ( {\bf R} _ { + } ; x ^ { - 1 } )$, then the integral $F ( \tau )$ converges in the mean square with respect to the norm of the space $L _ { 2 } ( \mathbf{R} _ { + } ; \tau \operatorname { tanh } ( \pi \tau / 2 ) )$ and is an isomorphism between these spaces. Moreover, the Parseval equality is true:
\begin{equation*} \int _ { 0 } ^ { \infty } | f ( x ) | ^ { 2 } \frac { d x } { x } = \frac { 4 } { \pi ^ { 2 } } \int _ { 0 } ^ { \infty } \tau \operatorname { tanh } ( \frac { \pi \tau } { 2 } ) \left| F ( \tau ) \right| ^ { 2 } d \tau, \end{equation*}
as well as the inversion formula
\begin{equation*} f ( x ) = \frac { 2 x } { \pi } \times \end{equation*}
\begin{equation*} \times \operatorname { lim } _ { N \rightarrow \infty } \int _ { 1 / N } ^ { N } \tau \operatorname { tanh } \left( \frac { \pi \tau } { 2 } \right) P _ { ( i \tau - 1 ) / 2 } ( 2 x ^ { 2 } + 1 ) F ( \tau ) d \tau , \end{equation*}
where the limit is taken with respect to the norm in $L _ { 2 } ( {\bf R} _ { + } ; x ^ { - 1 } )$. As is shown, for instance, in [a5], the Mehler–Fock transform can be represented as the composition of the Hankel transform of index zero (cf. Integral transform; Hardy transform) and the Kontorovich–Lebedev transform.
The generalized Mehler–Fock transform and its inverse involve the associated Legendre functions of the first kind $P _ { \nu } ^ { ( k ) } ( x )$ and are accordingly defined as:
\begin{equation*} F ( \tau ) = \frac { \tau \operatorname { sinh } ( \pi \tau ) } { \pi } \Gamma \left( \frac { 1 } { 2 } - k + i \tau \right)\times \end{equation*}
\begin{equation*} \times\, \Gamma \left( \frac { 1 } { 2 } - k - i \tau \right) \int _ { 1 } ^ { \infty } P _ { i \tau - 1/2 } ^ { ( k ) } ( x ) f ( x ) d x ,\; f ( x ) = \int _ { 0 } ^ { \infty } P _ { i \tau -1/2} ^ { ( k ) } ( x ) F ( \tau ) d \tau. \end{equation*}
If $k = 0$, these formulas reduce by simple substitutions to the ordinary Mehler–Fock transform. For $k = 1 / 2$, $x = \operatorname { cosh } \alpha$ one obtains the Fourier cosine transform, while $k = - 1 / 2$, $x = \operatorname { cosh } \alpha$ leads to the Fourier sine transform.
If $f , g \in L _ { p } ( {\bf R} _ { + } ; x ^ { \nu p - 1 } )$, where $1 / 2 < \nu < 1$, $p \geq 1$, then for the Mehler–Fock transform of type (see [a5])
\begin{equation*} F ( \tau ) = \int _ { 1 } ^ { \infty } P _ { i \tau - 1 / 2 } ( x ) f ( x ) d x \end{equation*}
one can define the convolution operator (cf. also Convolution transform)
\begin{equation*} ( f ^ { * } g ) ( x ) = \int _ { 1 } ^ { \infty } \int _ { 1 } ^ { \infty } S ( x , y , t ) f ( t ) g ( y ) d t d y, \end{equation*}
where $x > 1$ and
\begin{equation*} S ( x , y , t ) = \sqrt { \frac { 2 \pi } { D } } \operatorname { log } \left( \frac { x + y + t + 1 + \sqrt { D } } { x + y + t + 1 - \sqrt { D } } \right), \end{equation*}
for $x , y , t \geq 1$ and $D = x ^ { 2 } + y ^ { 2 } + t ^ { 2 } - 1 - 2 x y t$, where the main values of the square and the logarithm are taken (cf. also Logarithmic function).
The convolution $( f ^ { * } g ) ( x )$ belongs to the space $L _ { p } ( \mathbf{R} _ { + } ; x ^ { ( 1 - \nu ) p - 1 } )$ and has the following representation:
\begin{equation*} ( f ^ { * } g ) ( x ) = \end{equation*}
\begin{equation*} = \pi ^ { 2 } \sqrt { \frac { \pi } { 2 } } \int _ { 0 } ^ { \infty } \tau \frac { \operatorname { sinh } ( \pi \tau ) } { \operatorname { cosh } ^ { 3 } ( \pi \tau ) } P _ { i \tau - 1 / 2 } ( x ) F ( \tau ) G ( \tau ) d \tau, \end{equation*}
where $G ( \tau )$ is the Mehler–Fock transform of the function $g$.
References
[a1] | F.G. Mehler, "Ueber eine mit den Kugel- und cylinderfunctionen verwandte Function und ihre Anwendung in der Theorie der Electricitätsvertheilung" Math. Ann. , 18 (1881) pp. 161–194 |
[a2] | V.A. Fock, "On the representation of an arbitrary function by integrals involving the Legendre function with a complex index" Dokl. Akad. Nauk SSSR , 39 : 7 (1943) pp. 279–283 (In Russian) |
[a3] | N.N. Lebedev, "The Parseval theorem for the Mehler–Fock integral transform" Dokl. Akad. Nauk SSSR , 68 (1949) pp. 445–448 (In Russian) |
[a4] | S.B. Yakubovich, "On the Mehler–Fock integral transform in $L _ { p }$-spaces" Extracta Math. , 8 : 2–3 (1993) pp. 162–164 |
[a5] | S.B. Yakubovich, "Index transforms" , World Sci. (1996) pp. Chap. 3 |
[a6] | F. Oberhettinger, T.P. Higgins, "Tables of Lebedev, Mehler and generalized Mehler transforms" , Boeing Sci. Res. Lab. (1961) |
[a7] | I.N. Sneddon, "The use of integral transforms" , McGraw-Hill (1972) pp. Chap. 7 |
Mehler-Fock-transform(2). Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Mehler-Fock-transform(2)&oldid=11748