Difference between revisions of "Apéry numbers"
Ulf Rehmann (talk | contribs) m (moved Apery numbers to Apéry numbers over redirect: accented title) |
m (latex details) |
||
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
− | + | <!--This article has been texified automatically. Since there was no Nroff source code for this article, | |
+ | the semi-automatic procedure described at https://encyclopediaofmath.org/wiki/User:Maximilian_Janisch/latexlist | ||
+ | was used. | ||
+ | If the TeX and formula formatting is correct, please remove this message and the {{TEX|semi-auto}} category. | ||
− | + | Out of 29 formulas, 29 were replaced by TEX code.--> | |
− | + | {{TEX|semi-auto}}{{TEX|done}} | |
+ | The Apéry numbers $a _ { n }$, $b _ { n }$ are defined by the finite sums | ||
− | + | \begin{equation*} a _ { n } = \sum _ { k = 0 } ^ { n } \left( \begin{array} { c } { n + k } \\ { k } \end{array} \right) ^ { 2 } \left( \begin{array} { c } { n } \\ { k } \end{array} \right) ^ { 2 } , \quad b _ { n } = \sum _ { k = 0 } ^ { n } \left( \begin{array} { c } { n + k } \\ { k } \end{array} \right) \left( \begin{array} { c } { n } \\ { k } \end{array} \right) ^ { 2 } \end{equation*} | |
− | It did not take long before people noticed a large number of interesting congruence properties of Apéry numbers. For example, | + | for every integer $n \geq 0$. They were introduced in 1978 by R. Apéry in his highly remarkable irrationality proofs of $\zeta ( 3 )$ and $\zeta ( 2 ) = \pi ^ { 2 } / 6$, respectively. In the case of $\zeta ( 3 )$, Apéry showed that there exists a sequence of rational numbers $c _ { n }$ with denominator dividing $\operatorname { lcm } ( 1 , \ldots , n ) ^ { 3 }$ such that $0 < | a _ { n } \zeta ( 3 ) - c _ { n } | < ( \sqrt { 2 } - 1 ) ^ { 4 n }$ for all $n > 0$. Together with the fact that $\operatorname { lcm } ( 1 , \dots , n ) > 3 ^ { n }$, this implies the irrationality of $\zeta ( 3 )$. For a very lively and amusing account of Apéry's discovery, see [[#References|[a4]]]. In 1979 F. Beukers [[#References|[a1]]] gave a very short irrationality proof of $\zeta ( 3 )$, motivated by the shape of the Apéry numbers. Despite much efforts by many people there is no generalization to an irrationality proof of $\zeta ( 5 )$ so far (2001). |
+ | |||
+ | T. Rival [[#References|[a5]]] proved the very surprising result that $\zeta ( 2 n + 1 ) \notin \mathbf{Q}$ for infinitely many $n$. | ||
+ | |||
+ | It did not take long before people noticed a large number of interesting congruence properties of Apéry numbers. For example, $a _ { m p ^ r} \equiv a _ { m p ^ { r - 1 } } ( \operatorname { mod } p ^ { 3 r } )$ for all positive integers $m$, $r$ and all prime numbers $p \geq 5$. Another congruence is $a _ {( p - 1 )/ 2 } \equiv \gamma _ { p } ( \operatorname { mod } p )$ for all prime numbers $p \geq 5$. Here, $\gamma _ { n }$ denotes the coefficient of $q ^ { n }$ in the $q$-expansion of a modular cusp form. For more details see [[#References|[a2]]], [[#References|[a3]]]. | ||
====References==== | ====References==== | ||
− | <table>< | + | <table> |
+ | <tr><td valign="top">[a1]</td> <td valign="top"> F. Beukers, "A note on the irrationality of $\zeta ( 3 )$" ''Bull. London Math. Soc.'' , '''11''' (1979) pp. 268–272</td></tr> | ||
+ | <tr><td valign="top">[a2]</td> <td valign="top"> F. Beukers, "Some congruences for the Apéry numbers" ''J. Number Theory'' , '''21''' (1985) pp. 141–155</td></tr> | ||
+ | <tr><td valign="top">[a3]</td> <td valign="top"> F. Beukers, "Another conguence for the Apéry numbers" ''J. Number Theory'' , '''25''' (1987) pp. 201–210</td></tr> | ||
+ | <tr><td valign="top">[a4]</td> <td valign="top"> A.J. van der Poorten, "A proof that Euler missed $...$ Apéry's proof of the irrationality of $\zeta ( 3 )$" ''Math. Intelligencer'' , '''1''' (1979) pp. 195–203</td></tr> | ||
+ | <tr><td valign="top">[a5]</td> <td valign="top"> T. Rivoal, "La fonction zêta de Riemann prend une infinité de valeurs irrationnelles aux entiers impairs" ''C.R. Acad. Sci. Paris'' , '''331''' (2000) pp. 267–270</td></tr> | ||
+ | </table> |
Latest revision as of 20:51, 23 January 2024
The Apéry numbers $a _ { n }$, $b _ { n }$ are defined by the finite sums
\begin{equation*} a _ { n } = \sum _ { k = 0 } ^ { n } \left( \begin{array} { c } { n + k } \\ { k } \end{array} \right) ^ { 2 } \left( \begin{array} { c } { n } \\ { k } \end{array} \right) ^ { 2 } , \quad b _ { n } = \sum _ { k = 0 } ^ { n } \left( \begin{array} { c } { n + k } \\ { k } \end{array} \right) \left( \begin{array} { c } { n } \\ { k } \end{array} \right) ^ { 2 } \end{equation*}
for every integer $n \geq 0$. They were introduced in 1978 by R. Apéry in his highly remarkable irrationality proofs of $\zeta ( 3 )$ and $\zeta ( 2 ) = \pi ^ { 2 } / 6$, respectively. In the case of $\zeta ( 3 )$, Apéry showed that there exists a sequence of rational numbers $c _ { n }$ with denominator dividing $\operatorname { lcm } ( 1 , \ldots , n ) ^ { 3 }$ such that $0 < | a _ { n } \zeta ( 3 ) - c _ { n } | < ( \sqrt { 2 } - 1 ) ^ { 4 n }$ for all $n > 0$. Together with the fact that $\operatorname { lcm } ( 1 , \dots , n ) > 3 ^ { n }$, this implies the irrationality of $\zeta ( 3 )$. For a very lively and amusing account of Apéry's discovery, see [a4]. In 1979 F. Beukers [a1] gave a very short irrationality proof of $\zeta ( 3 )$, motivated by the shape of the Apéry numbers. Despite much efforts by many people there is no generalization to an irrationality proof of $\zeta ( 5 )$ so far (2001).
T. Rival [a5] proved the very surprising result that $\zeta ( 2 n + 1 ) \notin \mathbf{Q}$ for infinitely many $n$.
It did not take long before people noticed a large number of interesting congruence properties of Apéry numbers. For example, $a _ { m p ^ r} \equiv a _ { m p ^ { r - 1 } } ( \operatorname { mod } p ^ { 3 r } )$ for all positive integers $m$, $r$ and all prime numbers $p \geq 5$. Another congruence is $a _ {( p - 1 )/ 2 } \equiv \gamma _ { p } ( \operatorname { mod } p )$ for all prime numbers $p \geq 5$. Here, $\gamma _ { n }$ denotes the coefficient of $q ^ { n }$ in the $q$-expansion of a modular cusp form. For more details see [a2], [a3].
References
[a1] | F. Beukers, "A note on the irrationality of $\zeta ( 3 )$" Bull. London Math. Soc. , 11 (1979) pp. 268–272 |
[a2] | F. Beukers, "Some congruences for the Apéry numbers" J. Number Theory , 21 (1985) pp. 141–155 |
[a3] | F. Beukers, "Another conguence for the Apéry numbers" J. Number Theory , 25 (1987) pp. 201–210 |
[a4] | A.J. van der Poorten, "A proof that Euler missed $...$ Apéry's proof of the irrationality of $\zeta ( 3 )$" Math. Intelligencer , 1 (1979) pp. 195–203 |
[a5] | T. Rivoal, "La fonction zêta de Riemann prend une infinité de valeurs irrationnelles aux entiers impairs" C.R. Acad. Sci. Paris , 331 (2000) pp. 267–270 |
Apéry numbers. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Ap%C3%A9ry_numbers&oldid=23180