Difference between revisions of "Choquet integral"
m (AUTOMATIC EDIT (latexlist): Replaced 47 formulas out of 47 by TEX code with an average confidence of 2.0 and a minimal confidence of 2.0.) |
(details) |
||
Line 11: | Line 11: | ||
\begin{equation*} ( C ) \int _ { A } f d m = \int _ { 0 } ^ { + \infty } m ( A \bigcap F _ { \alpha } ) d \alpha, \end{equation*} | \begin{equation*} ( C ) \int _ { A } f d m = \int _ { 0 } ^ { + \infty } m ( A \bigcap F _ { \alpha } ) d \alpha, \end{equation*} | ||
− | where the right-hand side is an improper integral and $F _ { \alpha } = \{ x : f ( x ) \geq \alpha \}$ is the $\alpha$-cut of $f$, [[#References|[a1]]], [[#References|[a2]]], [[#References|[a6]]]. Specially, let $f$ be a simple measurable non-negative function on $( X , \mathcal{A} )$, $f = \sum _ { i = 1 } ^ { n } a _ { i } \chi _ {A_ i }$, $0 | + | where the right-hand side is an improper integral and $F _ { \alpha } = \{ x : f ( x ) \geq \alpha \}$ is the $\alpha$-cut of $f$, [[#References|[a1]]], [[#References|[a2]]], [[#References|[a6]]]. Specially, let $f$ be a simple measurable non-negative function on $( X , \mathcal{A} )$, $f = \sum _ { i = 1 } ^ { n } a _ { i } \chi _ {A_ i }$, $0 < a _ { 1 } < \ldots < a _ { n }$, $\{ A ; \} _ { i = 1 } ^ { n } \subset \mathcal{A}$ and $A _ { i } \cap A _ { j } = \emptyset$ whenever $i \neq j$. One can rewrite $f$ in the following form: |
\begin{equation*} f = \vee _ { i = 1 } ^ { n } a _ { i } \chi _ { B _ { i } } , \quad B _ { i } = \bigcup _ { j = i } ^ { n } A _ { i }. \end{equation*} | \begin{equation*} f = \vee _ { i = 1 } ^ { n } a _ { i } \chi _ { B _ { i } } , \quad B _ { i } = \bigcup _ { j = i } ^ { n } A _ { i }. \end{equation*} | ||
Line 45: | Line 45: | ||
====References==== | ====References==== | ||
− | <table><tr><td valign="top">[a1]</td> <td valign="top"> G. Choquet, "Theory of capacities" ''Ann. Inst. Fourier (Grenoble)'' , '''5''' (1953) pp. 131–295</td></tr><tr><td valign="top">[a2]</td> <td valign="top"> D. Denneberg, "Non-additive measure and integral" , Kluwer Acad. Publ. (1994)</td></tr><tr><td valign="top">[a3]</td> <td valign="top"> M. Grabisch, H.T. Nguyen, E.A. Walker, "Fundamentals of uncertainity calculi with application to fuzzy inference" , Kluwer Acad. Publ. (1995)</td></tr><tr><td valign="top">[a4]</td> <td valign="top"> R. Mesiar, "Choquet-like integrals" ''J. Math. Anal. Appl.'' , '''194''' (1995) pp. 477–488</td></tr><tr><td valign="top">[a5]</td> <td valign="top"> T. Murofushi, M. Sugeno, "A theory of fuzzy measures. Representation, the Choquet integral and null sets" ''J. Math. Anal. Appl.'' , '''159''' (1991) pp. 532–549</td></tr><tr><td valign="top">[a6]</td> <td valign="top"> E. Pap, "Null-additive set functions" , Kluwer Acad. Publ. /Ister (1995)</td></tr><tr><td valign="top">[a7]</td> <td valign="top"> D. Schmeidler, "Integral representation without additivity" ''Proc. Amer. Math. Soc.'' , '''97''' (1986) pp. 253–261</td></tr><tr><td valign="top">[a8]</td> <td valign="top"> M. Sugeno, "Theory of fuzzy integrals and its applications" ''PhD Thesis Tokyo Inst. Technol.'' (1974)</td></tr></table> | + | <table> |
+ | <tr><td valign="top">[a1]</td> <td valign="top"> G. Choquet, "Theory of capacities" ''Ann. Inst. Fourier (Grenoble)'' , '''5''' (1953) pp. 131–295</td></tr><tr><td valign="top">[a2]</td> <td valign="top"> D. Denneberg, "Non-additive measure and integral" , Kluwer Acad. Publ. (1994)</td></tr><tr><td valign="top">[a3]</td> <td valign="top"> M. Grabisch, H.T. Nguyen, E.A. Walker, "Fundamentals of uncertainity calculi with application to fuzzy inference" , Kluwer Acad. Publ. (1995)</td></tr><tr><td valign="top">[a4]</td> <td valign="top"> R. Mesiar, "Choquet-like integrals" ''J. Math. Anal. Appl.'' , '''194''' (1995) pp. 477–488</td></tr><tr><td valign="top">[a5]</td> <td valign="top"> T. Murofushi, M. Sugeno, "A theory of fuzzy measures. Representation, the Choquet integral and null sets" ''J. Math. Anal. Appl.'' , '''159''' (1991) pp. 532–549</td></tr><tr><td valign="top">[a6]</td> <td valign="top"> E. Pap, "Null-additive set functions" , Kluwer Acad. Publ. /Ister (1995)</td></tr><tr><td valign="top">[a7]</td> <td valign="top"> D. Schmeidler, "Integral representation without additivity" ''Proc. Amer. Math. Soc.'' , '''97''' (1986) pp. 253–261</td></tr><tr><td valign="top">[a8]</td> <td valign="top"> M. Sugeno, "Theory of fuzzy integrals and its applications" ''PhD Thesis Tokyo Inst. Technol.'' (1974)</td></tr> | ||
+ | </table> |
Latest revision as of 19:04, 23 January 2024
Let $( X , \mathcal{A} )$ be a measurable space. Let $m : \mathcal{A} \rightarrow [ 0 , \infty ]$ be a monotone set function (cf. also Set function) on $\mathcal{A}$, vanishing at the empty set, $m ( \emptyset ) = 0$. Let $f$ be a non-negative measurable function and $A \in \mathcal{A}$. The Choquet integral of $f$ on A with respect to $m$ is defined by
\begin{equation*} ( C ) \int _ { A } f d m = \int _ { 0 } ^ { + \infty } m ( A \bigcap F _ { \alpha } ) d \alpha, \end{equation*}
where the right-hand side is an improper integral and $F _ { \alpha } = \{ x : f ( x ) \geq \alpha \}$ is the $\alpha$-cut of $f$, [a1], [a2], [a6]. Specially, let $f$ be a simple measurable non-negative function on $( X , \mathcal{A} )$, $f = \sum _ { i = 1 } ^ { n } a _ { i } \chi _ {A_ i }$, $0 < a _ { 1 } < \ldots < a _ { n }$, $\{ A ; \} _ { i = 1 } ^ { n } \subset \mathcal{A}$ and $A _ { i } \cap A _ { j } = \emptyset$ whenever $i \neq j$. One can rewrite $f$ in the following form:
\begin{equation*} f = \vee _ { i = 1 } ^ { n } a _ { i } \chi _ { B _ { i } } , \quad B _ { i } = \bigcup _ { j = i } ^ { n } A _ { i }. \end{equation*}
Then
\begin{equation*} ( C ) \int _ { X } f d m = \sum _ { i = 1 } ^ { n } ( a _ { i } - a _ { i - 1 } ) m ( B _ { i } ), \end{equation*}
where $a_{ 0 } = 0$. Note that for a measure $m$ (i.e., for a $\sigma$-additive measure) the Lebesgue integral and the Choquet integral coincide.
The Choquet integral has the following properties:
$( C ) \int _ { A } f d m = ( C ) \int f . \chi _ { A } d m$.
For any constant $a \in [ 0 , + \infty [$, $(C) \int a \cdot f d m = a \cdot ( C ) \int f d m$.
If $f _ { 1 } \leq f _ { 2 }$ on $A$, then $(C)\int _ { A } f _ { 1 } d m \leq ( C ) \int _ { A } f_2 dm$.
For co-monotone functions $f _ { 1 }$ and $f _ { 2 }$, i.e., $( f _ { 1 } ( x ) - f _ { 1 } ( y ) ) . ( f _ { 2 } ( x ) - f _ { 2 } ( y ) ) \geq 0$ for all $x , y \in X$, one has
\begin{equation*} (C) \int ( f _ { 1 } + f _ { 2 } ) d m = ( C ) \int f _ { 1 } d m + ( C ) \int f _ { 2 } d m. \end{equation*}
For other properties of the Choquet integral, see [a2], [a6], [a7].
Related integrals and generalizations.
Let $f$ be a non-negative extended real-valued measurable function on $( X , \mathcal{A} , m )$ and $A \in \mathcal{A}$. The Sugeno integral [a8] of $f$ on $A$ with respect to $m$ is defined by
\begin{equation*} (S) \int _ { A } f d m = \operatorname { sup } _ { \alpha \in [ 0 , + \infty ] } [ \alpha \bigwedge m ( A \bigcap F _ { \alpha } ) ], \end{equation*}
where $F _ { \alpha } = \{ x : f ( x ) \geq \alpha \}$, $\alpha \in [ 0 , + \infty ]$.
The restrictions of Choquet-like integrals to the unit interval $[ 0,1 ]$ (both for functions and for fuzzy measures) are a special case of the more general $t$-conorm integrals defined in [a3], [a4], [a5].
References
[a1] | G. Choquet, "Theory of capacities" Ann. Inst. Fourier (Grenoble) , 5 (1953) pp. 131–295 |
[a2] | D. Denneberg, "Non-additive measure and integral" , Kluwer Acad. Publ. (1994) |
[a3] | M. Grabisch, H.T. Nguyen, E.A. Walker, "Fundamentals of uncertainity calculi with application to fuzzy inference" , Kluwer Acad. Publ. (1995) |
[a4] | R. Mesiar, "Choquet-like integrals" J. Math. Anal. Appl. , 194 (1995) pp. 477–488 |
[a5] | T. Murofushi, M. Sugeno, "A theory of fuzzy measures. Representation, the Choquet integral and null sets" J. Math. Anal. Appl. , 159 (1991) pp. 532–549 |
[a6] | E. Pap, "Null-additive set functions" , Kluwer Acad. Publ. /Ister (1995) |
[a7] | D. Schmeidler, "Integral representation without additivity" Proc. Amer. Math. Soc. , 97 (1986) pp. 253–261 |
[a8] | M. Sugeno, "Theory of fuzzy integrals and its applications" PhD Thesis Tokyo Inst. Technol. (1974) |
Choquet integral. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Choquet_integral&oldid=50079