Namespaces
Variants
Actions

Difference between revisions of "Nowhere-dense set"

From Encyclopedia of Mathematics
Jump to: navigation, search
(correction, and more)
(→‎References: zbl link)
 
Line 16: Line 16:
 
{|
 
{|
 
|-
 
|-
|valign="top"|{{Ref|AP}}|| A.V. Arkhangel'skii,   V.I. Ponomarev,   "Fundamentals of general topology: problems and exercises" , Reidel  (1984)
+
|valign="top"|{{Ref|AP}}|| A.V. Arkhangel'skii, V.I. Ponomarev, "Fundamentals of general topology: problems and exercises" , Reidel  (1984)
 
|-
 
|-
|valign="top"|{{Ref|Ox}}|| J.C. Oxtoby,   "Measure and category" , Springer  (1971) {{MR|0393403}} {{ZBL| 0217.09201}}
+
|valign="top"|{{Ref|Ox}}|| J.C. Oxtoby, "Measure and category" , Springer  (1971) {{MR|0393403}} {{ZBL|0217.09201}}
 
|-
 
|-
|valign="top"|{{Ref|Ke}}|| J.L. Kelley,   "General topology" , v. Nostrand  (1955) {{MR|0070144}} {{ZBL|0066.1660}}  
+
|valign="top"|{{Ref|Ke}}|| J.L. Kelley, "General topology" , v. Nostrand  (1955) {{MR|0070144}} {{ZBL|0066.1660}}  
 
|-
 
|-
 
|}
 
|}

Latest revision as of 19:07, 7 December 2023

2020 Mathematics Subject Classification: Primary: 54A05 Secondary: 54C05 [MSN][ZBL]

A subset $A$ of topological space $X$ is nowhere dense if, for every nonempty open $U\subset X$, the intersection $U\cap A$ is not dense in $U$. Common equivalent definitions are:

  • For every nonempty open set $U\subset X$, the interior of $U\setminus A$ is not empty.
  • The closure of $A$ has empty interior.
  • The complement of the closure of $A$ is dense.

In an infinite-dimensional Hilbert space, every compact subset is nowhere dense. The same holds for infinite-dimensional Banach spaces, non-locally-compact Hausdorff topological groups, and products of infinitely many non-compact Hausdorff topological spaces.

The Baire Category theorem asserts that if $X$ is a complete metric space or a locally compact Hausdorff space, then the complement of a countable union of nowhere dense sets is always nonempty.

References

[AP] A.V. Arkhangel'skii, V.I. Ponomarev, "Fundamentals of general topology: problems and exercises" , Reidel (1984)
[Ox] J.C. Oxtoby, "Measure and category" , Springer (1971) MR0393403 Zbl 0217.09201
[Ke] J.L. Kelley, "General topology" , v. Nostrand (1955) MR0070144 Zbl 0066.1660
How to Cite This Entry:
Nowhere-dense set. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Nowhere-dense_set&oldid=28115
This article was adapted from an original article by M.I. Voitsekhovskii (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article