|
|
(7 intermediate revisions by 2 users not shown) |
Line 1: |
Line 1: |
| ''t-norm'' | | ''t-norm'' |
| | | |
− | A binary operation on the unit interval <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120170/t1201701.png" />, i.e., a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120170/t1201702.png" /> such that for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120170/t1201703.png" /> the following four axioms are satisfied: | + | A [[binary operation]] on the unit interval $[0,1]$, i.e., a function $T : [0,1]^2 \rightarrow [0,1]$ such that for all $x,y,z \in [0,1]$ the following four axioms are satisfied: |
| | | |
− | T1) (commutativity) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120170/t1201704.png" />; | + | T1) (commutativity) $T(x,y) = T(y,x)$; |
| | | |
− | T2) (associativity) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120170/t1201705.png" />; | + | T2) (associativity) $T(x,T(y,z)) = T(T(x,y),z)$; |
| | | |
− | T3) (monotonicity) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120170/t1201706.png" /> whenever <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120170/t1201707.png" />; | + | T3) (monotonicity) $T(x,y) \le T(x,z)$ whenever $y \le z$; |
| | | |
− | T4) (boundary condition) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120170/t1201708.png" />. | + | T4) (boundary condition) $T(x,1) = x$. |
| | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120170/t1201709.png" /> is a triangular norm, then its dual triangular co-norm <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120170/t12017010.png" /> is given by | + | If $T$ is a triangular norm, then its ''dual triangular co-norm'' $S$ is given by |
| + | $$ |
| + | S(x,y) = 1 - T(1-x,1-y) \ . |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120170/t12017011.png" /></td> </tr></table>
| + | A function $T : [0,1]^2 \rightarrow [0,1]$ is a triangular norm if and only if $([0,1], T, {\le})$ is a fully ordered commutative [[semi-group]] (cf. [[#References|[a3]]] and [[O-group|$o$-group]]) with neutral element $1$ and annihilator $0$, where ${\le}$ is the usual order on $[0,1]$. |
| | | |
− | A function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120170/t12017012.png" /> is a triangular norm if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120170/t12017013.png" /> is a fully ordered commutative [[Semi-group|semi-group]] (cf. [[#References|[a3]]] and [[O-group|<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120170/t12017014.png" />-group]]) with neutral element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120170/t12017015.png" /> and annihilator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120170/t12017016.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120170/t12017017.png" /> is the usual order on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120170/t12017018.png" />.
| + | For each $I$-semi-group $([a,b],{\star})$, i.e. a semi-group in which the binary associative operation $\star$ on the closed subinterval $[a,b]$ of the extended real line is continuous and one of the boundary points of $[a,b]$ acts as a neutral element and the other one as an annihilator ([[#References|[a6]]], [[#References|[a7]]]), there exists a continuous triangular norm $T$ or a continuous triangular co-norm $S$ such that the linear transformation $\phi : [a,b] \rightarrow [0,1]$ given by |
− | | + | $$ |
− | For each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120170/t12017020.png" />-semi-group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120170/t12017021.png" />, i.e. a semi-group in which the binary associative operation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120170/t12017022.png" /> on the closed subinterval <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120170/t12017023.png" /> of the extended real line is continuous and one of the boundary points of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120170/t12017024.png" /> acts as a neutral element and the other one as an annihilator ([[#References|[a6]]], [[#References|[a7]]]), there exists a continuous triangular norm <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120170/t12017025.png" /> or a continuous triangular co-norm <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120170/t12017026.png" /> such that the linear transformation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120170/t12017027.png" /> given by
| + | \phi : x \mapsto \frac{x-a}{b-a} |
− | | + | $$ |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120170/t12017028.png" /></td> </tr></table>
| + | is an [[Isomorphism|isomorphism]] between $([a,b],{\star})$ and either $([0,1],T)$ or $([0,1],S)$. |
− | | |
− | is an [[Isomorphism|isomorphism]] between <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120170/t12017029.png" /> and either <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120170/t12017030.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120170/t12017031.png" />. | |
| | | |
| The following are the four basic triangular norms, together with their dual triangular co-norms: | | The following are the four basic triangular norms, together with their dual triangular co-norms: |
| | | |
− | i) the minimum <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120170/t12017032.png" /> and maximum <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120170/t12017033.png" />, given by | + | i) the minimum $T_{\mathrm{M}}$ and maximum $S_{\mathrm{M}}$, given by |
| + | $$ |
| + | T_{\mathrm{M}}(x,y) = \min(x,y) \ ; |
| + | $$ |
| + | $$ |
| + | S_{\mathrm{M}}(x,y) = \max(x,y) \ . |
| + | $$ |
| + | ii) the product $T_{\mathrm{P}}$ and probabilistic sum $S_{\mathrm{P}}$, given by |
| + | $$ |
| + | T_{\mathrm{P}}(x,y) = x \cdot y \ ; |
| + | $$ |
| + | $$ |
| + | S_{\mathrm{P}}(x,y) = x+y - x\cdot y \ . |
| + | $$ |
| + | iii) the Lukasiewicz triangular norm $T_{\mathrm{L}}$ and Lukasiewicz triangular co-norm $S_{\mathrm{L}}$, given by |
| + | $$ |
| + | T_{\mathrm{L}}(x,y) = \max(x+y-1,0) \ ; |
| + | $$ |
| + | $$ |
| + | S_{\mathrm{L}}(x,y) = \min(x+y,1) \ . |
| + | $$ |
| + | iv) the weakest triangular norm (or drastic product) $T_{\mathrm{D}}$ and strongest triangular co-norm $S_{\mathrm{D}}$, given by |
| + | $$ |
| + | T_{\mathrm{D}}(x,y) = \begin{cases} y & \text{if}\ x = 1 \\ x & \text{if}\, y = 1 \\ 0 & \text{otherwise} \end{cases} \ ; |
| + | $$ |
| + | $$ |
| + | S_{\mathrm{D}}(x,y) = \begin{cases} y & \text{if}\ x = 0 \\ x & \text{if}\, y = 0 \\ 1 & \text{otherwise} \end{cases} \ . |
| + | $$ |
| + | Let $T_k\,(k \in K)$ be a family of triangular norms and let $\{ (a_k,b_k) : k \in K \}$ be a family of pairwise disjoint open subintervals of the unit interval $[0,1]$ (i.e., $K$ is an at most countable index set). Consider the linear transformations $\phi_k : [a_k,b_k] \rightarrow [0,1]$ given by |
| + | $$ |
| + | \phi_k : u \mapsto \frac{u-a_k}{b_k-a_k} \ . |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120170/t12017034.png" /></td> </tr></table>
| + | Then the function $T : [0,1]^2 \rightarrow [0,1]$ defined by |
| + | $$ |
| + | T : (x,y) \mapsto \begin{cases} \phi_k^{-1}(T_k(\phi_k(x),\phi_k(y))) & \text{if}\, (x,y) \in (a_k,b_k)^2 \\ \min(x,y) & \text{otherwise} \end{cases} |
| + | $$ |
| + | is a triangular norm, which is called the ''ordinal sum'' of the summands $T_k\,(k \in K)$. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120170/t12017035.png" /></td> </tr></table>
| + | The following representations hold ([[#References|[a1]]], [[#References|[a5]]], [[#References|[a6]]]): |
| | | |
− | ii) the product <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120170/t12017036.png" /> and probabilistic sum <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120170/t12017037.png" />, given by
| + | A function $T : [0,1]^2 \rightarrow [0,1]$ is a ''continuous Archimedean'' triangular norm, i.e., for all $x \in (0,1)$ one has $T(x,x) < x$, if and only if there exists a continuous, strictly decreasing function $f : [0,1] \rightarrow [0,\infty]$ with $f(1) = 0$ such that for all $x,y \in [0,1]$, |
| + | $$ |
| + | T(x,y) = f^{-1}(\min(f(x)+f(y),0)) \ . |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120170/t12017038.png" /></td> </tr></table>
| + | The function $f$ is then called an ''additive generator'' of $T$; it is uniquely determined by $T$ up to a positive multiplicative constant. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120170/t12017039.png" /></td> </tr></table>
| + | $T$ is a ''continuous'' triangular norm if and only if $T$ is an ordinal sum whose summands are continuous Archimedean triangular norms. |
| | | |
− | iii) the Lukasiewicz triangular norm <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120170/t12017040.png" /> and Lukasiewicz triangular co-norm <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120170/t12017041.png" />, given by
| + | Triangular norms are applied in many fields, such as [[probabilistic metric space]]s [[#References|[a9]]], [[#References|[a4]]], fuzzy sets, fuzzy logics and their applications [[#References|[a4]]], the theory of generalized measures [[#References|[a2]]], [[#References|[a8]]], functional equations [[#References|[a1]]] and in non-linear differential and difference equations (see [[#References|[a4]]], [[#References|[a8]]]). |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120170/t12017042.png" /></td> </tr></table>
| + | ====References==== |
− | | + | <table> |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120170/t12017043.png" /></td> </tr></table>
| + | <TR><TD valign="top">[a1]</TD> <TD valign="top"> J. Aczél, "Lectures on functional equations and their applications" , Acad. Press (1969)</TD></TR> |
− | | + | <TR><TD valign="top">[a2]</TD> <TD valign="top"> D. Butnariu, E.P. Klement, "Triangular norm-based measures and games with fuzzy coalitions" , Kluwer Acad. Publ. (1993)</TD></TR> |
− | iv) the weakest triangular norm (or drastic product) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120170/t12017044.png" /> and strongest triangular co-norm <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120170/t12017045.png" />, given by
| + | <TR><TD valign="top">[a3]</TD> <TD valign="top"> L. Fuchs, "Partially ordered algebraic systems" , Pergamon (1963) {{ZBL|0137.02001}}</TD></TR> |
− | | + | <TR><TD valign="top">[a4]</TD> <TD valign="top"> E.P. Klement, R. Mesiar, E. Pap, "Triangular norms" Trends in Logic--Studia Logica Library '''8''' Kluwer Academic {{ISBN|0-7923-6416-3}} {{ZBL|0972.03002}} |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120170/t12017046.png" /></td> </tr></table>
| + | </TD></TR> |
− | | + | <TR><TD valign="top">[a5]</TD> <TD valign="top"> C.M. Ling, "Representation of associative functions" ''Publ. Math. Debrecen'' , '''12''' (1965) pp. 189–212</TD></TR> |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120170/t12017047.png" /></td> </tr></table> | + | <TR><TD valign="top">[a6]</TD> <TD valign="top"> P.S. Mostert, A.L. Shields, "On the structure of semigroups on a compact manifold with boundary" ''Ann. of Math.'' , '''65''' (1957) pp. 117–143</TD></TR> |
− | | + | <TR><TD valign="top">[a7]</TD> <TD valign="top"> A.B. Paalman-de Miranda, "Topological semigroups" , ''Tracts'' , '''11''' , Math. Centre Amsterdam (1970)</TD></TR> |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120170/t12017048.png" /> be a family of triangular norms and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120170/t12017049.png" /> be a family of pairwise disjoint open subintervals of the unit interval <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120170/t12017050.png" /> (i.e., <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120170/t12017051.png" /> is an at most countable index set). Consider the linear transformations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120170/t12017052.png" /> given by
| + | <TR><TD valign="top">[a8]</TD> <TD valign="top"> E. Pap, "Null-additive set functions" , Kluwer Acad. Publ. &Ister Sci. (1995)</TD></TR> |
− | | + | <TR><TD valign="top">[a9]</TD> <TD valign="top"> B. Schweizer, A. Sklar, "Probabilistic metric spaces" , North-Holland (1983)</TD></TR> |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120170/t12017053.png" /></td> </tr></table> | + | </table> |
− | | |
− | Then the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120170/t12017054.png" /> defined by
| |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120170/t12017055.png" /></td> </tr></table> | |
− | | |
− | is a triangular norm, which is called the ordinal sum of the summands <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120170/t12017056.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120170/t12017057.png" />.
| |
− | | |
− | The following representations hold ([[#References|[a1]]], [[#References|[a5]]], [[#References|[a6]]]):
| |
− | | |
− | A function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120170/t12017058.png" /> is a continuous Archimedean triangular norm, i.e., for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120170/t12017059.png" /> one has <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120170/t12017060.png" />, if and only if there exists a continuous, strictly decreasing function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120170/t12017061.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120170/t12017062.png" /> such that for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120170/t12017063.png" />,
| |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120170/t12017064.png" /></td> </tr></table> | |
− | | |
− | The function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120170/t12017065.png" /> is then called an additive generator of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120170/t12017066.png" />; it is uniquely determined by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120170/t12017067.png" /> up to a positive multiplicative constant.
| |
− | | |
− | <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120170/t12017068.png" /> is a continuous triangular norm if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120170/t12017069.png" /> is an ordinal sum whose summands are continuous Archimedean triangular norms. | |
| | | |
− | Triangular norms are applied in many fields, such as probabilistic metric spaces [[#References|[a9]]], [[#References|[a4]]], fuzzy sets, fuzzy logics and their applications [[#References|[a4]]], the theory of generalized measures [[#References|[a2]]], [[#References|[a8]]], functional equations [[#References|[a1]]] and in non-linear differential and difference equations (see [[#References|[a4]]], [[#References|[a8]]]).
| + | ====Comments==== |
| + | If $T$ is a triangular norm on $[0,1]$, then $([0,1], {\max}, T)$ is an [[idempotent semi-ring]] with additive identity $0$ and multiplicative identity $1$. |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> J. Aczél, "Lectures on functional equations and their applications" , Acad. Press (1969)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> D. Butnariu, E.P. Klement, "Triangular norm-based measures and games with fuzzy coalitions" , Kluwer Acad. Publ. (1993)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> L. Fuchs, "Partially ordered algebraic systems" , Pergamon (1963)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> E.P. Klement, R. Mesiar, E. Pap, "Triangular norms" (to appear)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> C.M. Ling, "Representation of associative functions" ''Publ. Math. Debrecen'' , '''12''' (1965) pp. 189–212</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> P.S. Mostert, A.L. Shields, "On the structure of semigroups on a compact manifold with boundary" ''Ann. of Math.'' , '''65''' (1957) pp. 117–143</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top"> A.B. Paalman-de Miranda, "Topological semigroups" , ''Tracts'' , '''11''' , Math. Centre Amsterdam (1970)</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top"> E. Pap, "Null-additive set functions" , Kluwer Acad. Publ. &Ister Sci. (1995)</TD></TR><TR><TD valign="top">[a9]</TD> <TD valign="top"> B. Schweizer, A. Sklar, "Probabilistic metric spaces" , North-Holland (1983)</TD></TR></table> | + | <table> |
| + | <TR><TD valign="top">[b1]</TD> <TD valign="top">Jonathan S. Golan, ''Semirings and their Applications'' Springer (2010) [1999] {{ISBN|9401593337}}{{ZBL|0947.16034}}</TD></TR> |
| + | </table> |
| + | {{TEX|done}} |
t-norm
A binary operation on the unit interval $[0,1]$, i.e., a function $T : [0,1]^2 \rightarrow [0,1]$ such that for all $x,y,z \in [0,1]$ the following four axioms are satisfied:
T1) (commutativity) $T(x,y) = T(y,x)$;
T2) (associativity) $T(x,T(y,z)) = T(T(x,y),z)$;
T3) (monotonicity) $T(x,y) \le T(x,z)$ whenever $y \le z$;
T4) (boundary condition) $T(x,1) = x$.
If $T$ is a triangular norm, then its dual triangular co-norm $S$ is given by
$$
S(x,y) = 1 - T(1-x,1-y) \ .
$$
A function $T : [0,1]^2 \rightarrow [0,1]$ is a triangular norm if and only if $([0,1], T, {\le})$ is a fully ordered commutative semi-group (cf. [a3] and $o$-group) with neutral element $1$ and annihilator $0$, where ${\le}$ is the usual order on $[0,1]$.
For each $I$-semi-group $([a,b],{\star})$, i.e. a semi-group in which the binary associative operation $\star$ on the closed subinterval $[a,b]$ of the extended real line is continuous and one of the boundary points of $[a,b]$ acts as a neutral element and the other one as an annihilator ([a6], [a7]), there exists a continuous triangular norm $T$ or a continuous triangular co-norm $S$ such that the linear transformation $\phi : [a,b] \rightarrow [0,1]$ given by
$$
\phi : x \mapsto \frac{x-a}{b-a}
$$
is an isomorphism between $([a,b],{\star})$ and either $([0,1],T)$ or $([0,1],S)$.
The following are the four basic triangular norms, together with their dual triangular co-norms:
i) the minimum $T_{\mathrm{M}}$ and maximum $S_{\mathrm{M}}$, given by
$$
T_{\mathrm{M}}(x,y) = \min(x,y) \ ;
$$
$$
S_{\mathrm{M}}(x,y) = \max(x,y) \ .
$$
ii) the product $T_{\mathrm{P}}$ and probabilistic sum $S_{\mathrm{P}}$, given by
$$
T_{\mathrm{P}}(x,y) = x \cdot y \ ;
$$
$$
S_{\mathrm{P}}(x,y) = x+y - x\cdot y \ .
$$
iii) the Lukasiewicz triangular norm $T_{\mathrm{L}}$ and Lukasiewicz triangular co-norm $S_{\mathrm{L}}$, given by
$$
T_{\mathrm{L}}(x,y) = \max(x+y-1,0) \ ;
$$
$$
S_{\mathrm{L}}(x,y) = \min(x+y,1) \ .
$$
iv) the weakest triangular norm (or drastic product) $T_{\mathrm{D}}$ and strongest triangular co-norm $S_{\mathrm{D}}$, given by
$$
T_{\mathrm{D}}(x,y) = \begin{cases} y & \text{if}\ x = 1 \\ x & \text{if}\, y = 1 \\ 0 & \text{otherwise} \end{cases} \ ;
$$
$$
S_{\mathrm{D}}(x,y) = \begin{cases} y & \text{if}\ x = 0 \\ x & \text{if}\, y = 0 \\ 1 & \text{otherwise} \end{cases} \ .
$$
Let $T_k\,(k \in K)$ be a family of triangular norms and let $\{ (a_k,b_k) : k \in K \}$ be a family of pairwise disjoint open subintervals of the unit interval $[0,1]$ (i.e., $K$ is an at most countable index set). Consider the linear transformations $\phi_k : [a_k,b_k] \rightarrow [0,1]$ given by
$$
\phi_k : u \mapsto \frac{u-a_k}{b_k-a_k} \ .
$$
Then the function $T : [0,1]^2 \rightarrow [0,1]$ defined by
$$
T : (x,y) \mapsto \begin{cases} \phi_k^{-1}(T_k(\phi_k(x),\phi_k(y))) & \text{if}\, (x,y) \in (a_k,b_k)^2 \\ \min(x,y) & \text{otherwise} \end{cases}
$$
is a triangular norm, which is called the ordinal sum of the summands $T_k\,(k \in K)$.
The following representations hold ([a1], [a5], [a6]):
A function $T : [0,1]^2 \rightarrow [0,1]$ is a continuous Archimedean triangular norm, i.e., for all $x \in (0,1)$ one has $T(x,x) < x$, if and only if there exists a continuous, strictly decreasing function $f : [0,1] \rightarrow [0,\infty]$ with $f(1) = 0$ such that for all $x,y \in [0,1]$,
$$
T(x,y) = f^{-1}(\min(f(x)+f(y),0)) \ .
$$
The function $f$ is then called an additive generator of $T$; it is uniquely determined by $T$ up to a positive multiplicative constant.
$T$ is a continuous triangular norm if and only if $T$ is an ordinal sum whose summands are continuous Archimedean triangular norms.
Triangular norms are applied in many fields, such as probabilistic metric spaces [a9], [a4], fuzzy sets, fuzzy logics and their applications [a4], the theory of generalized measures [a2], [a8], functional equations [a1] and in non-linear differential and difference equations (see [a4], [a8]).
References
[a1] | J. Aczél, "Lectures on functional equations and their applications" , Acad. Press (1969) |
[a2] | D. Butnariu, E.P. Klement, "Triangular norm-based measures and games with fuzzy coalitions" , Kluwer Acad. Publ. (1993) |
[a3] | L. Fuchs, "Partially ordered algebraic systems" , Pergamon (1963) Zbl 0137.02001 |
[a4] | E.P. Klement, R. Mesiar, E. Pap, "Triangular norms" Trends in Logic--Studia Logica Library 8 Kluwer Academic ISBN 0-7923-6416-3 Zbl 0972.03002
|
[a5] | C.M. Ling, "Representation of associative functions" Publ. Math. Debrecen , 12 (1965) pp. 189–212 |
[a6] | P.S. Mostert, A.L. Shields, "On the structure of semigroups on a compact manifold with boundary" Ann. of Math. , 65 (1957) pp. 117–143 |
[a7] | A.B. Paalman-de Miranda, "Topological semigroups" , Tracts , 11 , Math. Centre Amsterdam (1970) |
[a8] | E. Pap, "Null-additive set functions" , Kluwer Acad. Publ. &Ister Sci. (1995) |
[a9] | B. Schweizer, A. Sklar, "Probabilistic metric spaces" , North-Holland (1983) |
If $T$ is a triangular norm on $[0,1]$, then $([0,1], {\max}, T)$ is an idempotent semi-ring with additive identity $0$ and multiplicative identity $1$.
References
[b1] | Jonathan S. Golan, Semirings and their Applications Springer (2010) [1999] ISBN 9401593337Zbl 0947.16034 |