Difference between revisions of "Berry-Esseen inequality"
(TeX) |
m (→References: isbn link) |
||
(6 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
+ | {{MSC|60F05}} | ||
+ | |||
+ | [[Category:Limit theorems]] | ||
+ | |||
{{TEX|done}} | {{TEX|done}} | ||
+ | |||
An inequality giving an estimate of the deviation of the distribution function of a sum of independent random variables from the normal distribution function. Let $X_1,\ldots,X_n$ be independent random variables with the same distribution such that | An inequality giving an estimate of the deviation of the distribution function of a sum of independent random variables from the normal distribution function. Let $X_1,\ldots,X_n$ be independent random variables with the same distribution such that | ||
− | $$\mathbf{E}X_j=0 | + | $$\mathbf{E}X_j=0,\quad \mathbf{E}X_j^2=\sigma^2>0,\quad\mathbf{E}\lvert X_j\rvert^3<\infty.$$ |
Let | Let | ||
Line 16: | Line 21: | ||
$$\sup_x\left\lvert\mathbf{P}\left\{\frac{1}{\sigma\sqrt{n}}\sum_{j=1}^nX_j\leq x\right\}-\Phi(x)\right\rvert\leq A\frac{\rho}{\sqrt{n}},$$ | $$\sup_x\left\lvert\mathbf{P}\left\{\frac{1}{\sigma\sqrt{n}}\sum_{j=1}^nX_j\leq x\right\}-\Phi(x)\right\rvert\leq A\frac{\rho}{\sqrt{n}},$$ | ||
− | where $A$ is an absolute positive constant. This result was obtained by A.C. Berry {{Cite|Be}} and, independently, by C.G. Esseen {{Cite|Es}}. | + | where $A$ is an absolute positive constant. This result was obtained by A.C. Berry {{Cite|Be}} and, independently, by C.G. Esseen {{Cite|Es}}. Feller obtained an explicit value for the constant $A \le 33/4$ , see {{Cite|Fe|p. 515}}: it is now known that $A \le 0.7655$, see {{Cite|Fi|p. 264}}. |
====References==== | ====References==== | ||
Line 25: | Line 30: | ||
|valign="top"|{{Ref|Es}}||valign="top"| C.G. Esseen, "On the Liapunoff limit of error in the theory of probability" ''Ark. Mat. Astr. Fysik'' , '''28A''' : 2 (1942) pp. 1–19 | |valign="top"|{{Ref|Es}}||valign="top"| C.G. Esseen, "On the Liapunoff limit of error in the theory of probability" ''Ark. Mat. Astr. Fysik'' , '''28A''' : 2 (1942) pp. 1–19 | ||
|- | |- | ||
− | |valign="top"|{{Ref|Fe}}||valign="top"| W. Feller, | + | |valign="top"|{{Ref|Fe}}||valign="top"| W. Feller, [[Feller, "An introduction to probability theory and its applications"|"An introduction to probability theory and its applications"]], '''2''' , Wiley (1966) pp. 210 |
|- | |- | ||
− | |valign="top"|{{Ref| | + | |valign="top"|{{Ref|Fi}}||valign="top"| Steven R. Finch, "Mathematical Constants", Cambridge University Press (2003) {{ISBN|0-521-81805-2}} Sect. 4.6 |
|- | |- | ||
+ | |valign="top"|{{Ref|Pe}}||valign="top"| V.V. Petrov, "Sums of independent random variables" , Springer (1975) (Translated from Russian) {{MR|0388499}} {{ZBL|0322.60043}} {{ZBL|0322.60042}} | ||
|} | |} |
Latest revision as of 11:49, 23 November 2023
2020 Mathematics Subject Classification: Primary: 60F05 [MSN][ZBL]
An inequality giving an estimate of the deviation of the distribution function of a sum of independent random variables from the normal distribution function. Let $X_1,\ldots,X_n$ be independent random variables with the same distribution such that
$$\mathbf{E}X_j=0,\quad \mathbf{E}X_j^2=\sigma^2>0,\quad\mathbf{E}\lvert X_j\rvert^3<\infty.$$
Let
$$\rho=\frac{\mathbf{E}\lvert X_j\rvert^3}{\sigma^3}$$
and
$$\Phi(x)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^x e^{-t^2/2}\,\mathrm{d}t;$$
then, for any $n$,
$$\sup_x\left\lvert\mathbf{P}\left\{\frac{1}{\sigma\sqrt{n}}\sum_{j=1}^nX_j\leq x\right\}-\Phi(x)\right\rvert\leq A\frac{\rho}{\sqrt{n}},$$
where $A$ is an absolute positive constant. This result was obtained by A.C. Berry [Be] and, independently, by C.G. Esseen [Es]. Feller obtained an explicit value for the constant $A \le 33/4$ , see [Fe, p. 515]: it is now known that $A \le 0.7655$, see [Fi, p. 264].
References
[Be] | A.C. Berry, "The accuracy of the Gaussian approximation to the sum of independent variables" Trans. Amer. Math. Soc. , 49 (1941) pp. 122–136 |
[Es] | C.G. Esseen, "On the Liapunoff limit of error in the theory of probability" Ark. Mat. Astr. Fysik , 28A : 2 (1942) pp. 1–19 |
[Fe] | W. Feller, "An introduction to probability theory and its applications", 2 , Wiley (1966) pp. 210 |
[Fi] | Steven R. Finch, "Mathematical Constants", Cambridge University Press (2003) ISBN 0-521-81805-2 Sect. 4.6 |
[Pe] | V.V. Petrov, "Sums of independent random variables" , Springer (1975) (Translated from Russian) MR0388499 Zbl 0322.60043 Zbl 0322.60042 |
Berry-Esseen inequality. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Berry-Esseen_inequality&oldid=25038