Difference between revisions of "Berry-Esseen inequality"
Ulf Rehmann (talk | contribs) m (moved Berry–Esseen inequality to Berry-Esseen inequality: ascii title) |
m (→References: isbn link) |
||
(7 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
− | + | {{MSC|60F05}} | |
− | + | [[Category:Limit theorems]] | |
− | + | {{TEX|done}} | |
− | + | An inequality giving an estimate of the deviation of the distribution function of a sum of independent random variables from the normal distribution function. Let $X_1,\ldots,X_n$ be independent random variables with the same distribution such that | |
− | + | $$\mathbf{E}X_j=0,\quad \mathbf{E}X_j^2=\sigma^2>0,\quad\mathbf{E}\lvert X_j\rvert^3<\infty.$$ | |
− | + | Let | |
− | + | $$\rho=\frac{\mathbf{E}\lvert X_j\rvert^3}{\sigma^3}$$ | |
− | + | and | |
− | + | $$\Phi(x)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^x e^{-t^2/2}\,\mathrm{d}t;$$ | |
− | |||
− | |||
− | |||
+ | then, for any $n$, | ||
+ | $$\sup_x\left\lvert\mathbf{P}\left\{\frac{1}{\sigma\sqrt{n}}\sum_{j=1}^nX_j\leq x\right\}-\Phi(x)\right\rvert\leq A\frac{\rho}{\sqrt{n}},$$ | ||
− | + | where $A$ is an absolute positive constant. This result was obtained by A.C. Berry {{Cite|Be}} and, independently, by C.G. Esseen {{Cite|Es}}. Feller obtained an explicit value for the constant $A \le 33/4$ , see {{Cite|Fe|p. 515}}: it is now known that $A \le 0.7655$, see {{Cite|Fi|p. 264}}. | |
− | |||
====References==== | ====References==== | ||
− | + | {| | |
+ | |- | ||
+ | |valign="top"|{{Ref|Be}}||valign="top"| A.C. Berry, "The accuracy of the Gaussian approximation to the sum of independent variables" ''Trans. Amer. Math. Soc.'' , '''49''' (1941) pp. 122–136 | ||
+ | |- | ||
+ | |valign="top"|{{Ref|Es}}||valign="top"| C.G. Esseen, "On the Liapunoff limit of error in the theory of probability" ''Ark. Mat. Astr. Fysik'' , '''28A''' : 2 (1942) pp. 1–19 | ||
+ | |- | ||
+ | |valign="top"|{{Ref|Fe}}||valign="top"| W. Feller, [[Feller, "An introduction to probability theory and its applications"|"An introduction to probability theory and its applications"]], '''2''' , Wiley (1966) pp. 210 | ||
+ | |- | ||
+ | |valign="top"|{{Ref|Fi}}||valign="top"| Steven R. Finch, "Mathematical Constants", Cambridge University Press (2003) {{ISBN|0-521-81805-2}} Sect. 4.6 | ||
+ | |- | ||
+ | |valign="top"|{{Ref|Pe}}||valign="top"| V.V. Petrov, "Sums of independent random variables" , Springer (1975) (Translated from Russian) {{MR|0388499}} {{ZBL|0322.60043}} {{ZBL|0322.60042}} | ||
+ | |} |
Latest revision as of 11:49, 23 November 2023
2020 Mathematics Subject Classification: Primary: 60F05 [MSN][ZBL]
An inequality giving an estimate of the deviation of the distribution function of a sum of independent random variables from the normal distribution function. Let $X_1,\ldots,X_n$ be independent random variables with the same distribution such that
$$\mathbf{E}X_j=0,\quad \mathbf{E}X_j^2=\sigma^2>0,\quad\mathbf{E}\lvert X_j\rvert^3<\infty.$$
Let
$$\rho=\frac{\mathbf{E}\lvert X_j\rvert^3}{\sigma^3}$$
and
$$\Phi(x)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^x e^{-t^2/2}\,\mathrm{d}t;$$
then, for any $n$,
$$\sup_x\left\lvert\mathbf{P}\left\{\frac{1}{\sigma\sqrt{n}}\sum_{j=1}^nX_j\leq x\right\}-\Phi(x)\right\rvert\leq A\frac{\rho}{\sqrt{n}},$$
where $A$ is an absolute positive constant. This result was obtained by A.C. Berry [Be] and, independently, by C.G. Esseen [Es]. Feller obtained an explicit value for the constant $A \le 33/4$ , see [Fe, p. 515]: it is now known that $A \le 0.7655$, see [Fi, p. 264].
References
[Be] | A.C. Berry, "The accuracy of the Gaussian approximation to the sum of independent variables" Trans. Amer. Math. Soc. , 49 (1941) pp. 122–136 |
[Es] | C.G. Esseen, "On the Liapunoff limit of error in the theory of probability" Ark. Mat. Astr. Fysik , 28A : 2 (1942) pp. 1–19 |
[Fe] | W. Feller, "An introduction to probability theory and its applications", 2 , Wiley (1966) pp. 210 |
[Fi] | Steven R. Finch, "Mathematical Constants", Cambridge University Press (2003) ISBN 0-521-81805-2 Sect. 4.6 |
[Pe] | V.V. Petrov, "Sums of independent random variables" , Springer (1975) (Translated from Russian) MR0388499 Zbl 0322.60043 Zbl 0322.60042 |
Berry-Esseen inequality. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Berry-Esseen_inequality&oldid=22107