Difference between revisions of "Sierpinski space"
From Encyclopedia of Mathematics
(→References: expand bibliodata) |
m (→References: isbn link) |
||
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
+ | ''connected colon'' | ||
+ | |||
The Sierpinski space is a particular [[topological space]]. It consists of the set $\{a,b\}$ with open sets $\{ \emptyset, \{a\}, \{a,b\} \}$. | The Sierpinski space is a particular [[topological space]]. It consists of the set $\{a,b\}$ with open sets $\{ \emptyset, \{a\}, \{a,b\} \}$. | ||
====References==== | ====References==== | ||
− | * Steen, Lynn Arthur; Seebach, J.Arthur jun. ''Counterexamples in topology'' (2nd ed.) Springer (1978) ISBN 0-387-90312-7 {{ZBL|0386.54001}} | + | * Steen, Lynn Arthur; Seebach, J.Arthur jun. ''Counterexamples in topology'' (2nd ed.) Springer (1978) {{ISBN|0-387-90312-7}} {{ZBL|0386.54001}} |
Latest revision as of 19:39, 17 November 2023
connected colon
The Sierpinski space is a particular topological space. It consists of the set $\{a,b\}$ with open sets $\{ \emptyset, \{a\}, \{a,b\} \}$.
References
- Steen, Lynn Arthur; Seebach, J.Arthur jun. Counterexamples in topology (2nd ed.) Springer (1978) ISBN 0-387-90312-7 Zbl 0386.54001
How to Cite This Entry:
Sierpinski space. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Sierpinski_space&oldid=37264
Sierpinski space. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Sierpinski_space&oldid=37264