Difference between revisions of "Möbius function"
Ulf Rehmann (talk | contribs) m (moved Moebius function to Möbius function over redirect: accented title) |
m (→References: isbn link) |
||
(20 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
− | + | {{MSC|11A}} | |
+ | {{TEX|done}} | ||
− | The Möbius function is | + | The Möbius function is an [[arithmetic function]] of a natural number argument $n$ with $\mu(1)=1$, $\mu(n)=0$ if $n$ is divisible by the square of a prime number, otherwise $\mu(n) = (-1)^k$, where $k$ is the number of prime factors of $n$. This function was introduced by A. Möbius in 1832. |
− | + | The Möbius function is a | |
+ | [[Multiplicative arithmetic function|multiplicative arithmetic function]]; $\sum_{d|n}\mu(d) = 0$ if $n>1$. It is used in the study of other arithmetic functions; it appears in inversion formulas (see, e.g. | ||
+ | [[Möbius series|Möbius series]]). The following estimate is known for the mean value of the Möbius function | ||
+ | {{Cite|Wa}}: | ||
− | + | $${1\over x}\Big|\sum_{n\le x}\mu(n)\Big| \le \exp\{-c \ln^{3/5} x(\ln\ln x)^{-1/5} \},$$ | |
+ | |||
+ | where $c$ is a constant. The fact that the mean value tends to zero as $x\to \infty$ implies an asymptotic law for the | ||
+ | [[Distribution of prime numbers|distribution of prime numbers]] in the natural series. | ||
+ | |||
+ | The Möbius function satisfies the explicit formula | ||
+ | |||
+ | $$ \sum_{n=1}^{\infty} \frac{\mu(n)}{\sqrt{n}}g(\log n)=\sum_{\rho}\frac{h( \gamma)}{\zeta '( \rho )}+\sum_{n=1}^{\infty} \frac{1}{\zeta ' (-2n)} \int_{-\infty}^{\infty}dxg(x)e^{-(2n+1/2)x} $$ | ||
+ | |||
+ | Where $$ g(u)= \frac{1}{2\pi} \int_{-\infty}^\infty h(x)\exp(-iux) $$ | ||
+ | |||
+ | form a Fourier transformation pair | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | The multiplicative arithmetic functions form a [[ | + | |
+ | The multiplicative arithmetic functions form a [[group]] under the convolution product $(f*g)(n) = \sum_{d|n}f(d)g(n/d)$. The Möbius function is in fact the inverse of the constant multiplicative function $E$ (defined by $E(n)=1$ for all $n\in \N$) under this convolution product. From this there follows many "inversion formulas", cf. [[Möbius inversion]]. | ||
+ | |||
+ | For the Möbius function associated to a [[partially ordered set]], see [[Enumeration theory]]. In this context, the arithmetic Möbius function defined in this article appears as the function associated to the natural numbers ordered by divisibility. | ||
====References==== | ====References==== | ||
− | + | {| | |
+ | |- | ||
+ | |valign="top"|{{Ref|HaWr}}||valign="top"| G.H. Hardy, E.M. Wright, "An introduction to the theory of numbers", Clarendon Press (1979) {{MR|0568909}} | ||
+ | |- | ||
+ | |valign="top"|{{Ref|Vi}}||valign="top"| I.M. Vinogradov, "Elements of number theory", Dover, reprint (1954) (Translated from Russian) {{MR|0062138}} | ||
+ | |- | ||
+ | |valign="top"|{{Ref|Wa}}||valign="top"| A. Walfisz, "Weylsche Exponentialsummen in der neueren Zahlentheorie", Deutsch. Verlag Wissenschaft. (1963) {{MR|0220685}} | ||
+ | |- | ||
+ | |valign="top"|{{Ref|KRY}}||valign="top"| Kung, Joseph P. S.; Rota, Gian-Carlo; Yan, Catherine H. ''Combinatorics. The Rota way''. Cambridge University Press (2009) {{ISBN|978-0-521-73794-4}} {{ZBL|1159.05002}} | ||
+ | |- | ||
+ | |} |
Latest revision as of 08:19, 4 November 2023
2020 Mathematics Subject Classification: Primary: 11A [MSN][ZBL]
The Möbius function is an arithmetic function of a natural number argument $n$ with $\mu(1)=1$, $\mu(n)=0$ if $n$ is divisible by the square of a prime number, otherwise $\mu(n) = (-1)^k$, where $k$ is the number of prime factors of $n$. This function was introduced by A. Möbius in 1832.
The Möbius function is a multiplicative arithmetic function; $\sum_{d|n}\mu(d) = 0$ if $n>1$. It is used in the study of other arithmetic functions; it appears in inversion formulas (see, e.g. Möbius series). The following estimate is known for the mean value of the Möbius function [Wa]:
$${1\over x}\Big|\sum_{n\le x}\mu(n)\Big| \le \exp\{-c \ln^{3/5} x(\ln\ln x)^{-1/5} \},$$
where $c$ is a constant. The fact that the mean value tends to zero as $x\to \infty$ implies an asymptotic law for the distribution of prime numbers in the natural series.
The Möbius function satisfies the explicit formula
$$ \sum_{n=1}^{\infty} \frac{\mu(n)}{\sqrt{n}}g(\log n)=\sum_{\rho}\frac{h( \gamma)}{\zeta '( \rho )}+\sum_{n=1}^{\infty} \frac{1}{\zeta ' (-2n)} \int_{-\infty}^{\infty}dxg(x)e^{-(2n+1/2)x} $$
Where $$ g(u)= \frac{1}{2\pi} \int_{-\infty}^\infty h(x)\exp(-iux) $$
form a Fourier transformation pair
Comments
The multiplicative arithmetic functions form a group under the convolution product $(f*g)(n) = \sum_{d|n}f(d)g(n/d)$. The Möbius function is in fact the inverse of the constant multiplicative function $E$ (defined by $E(n)=1$ for all $n\in \N$) under this convolution product. From this there follows many "inversion formulas", cf. Möbius inversion.
For the Möbius function associated to a partially ordered set, see Enumeration theory. In this context, the arithmetic Möbius function defined in this article appears as the function associated to the natural numbers ordered by divisibility.
References
[HaWr] | G.H. Hardy, E.M. Wright, "An introduction to the theory of numbers", Clarendon Press (1979) MR0568909 |
[Vi] | I.M. Vinogradov, "Elements of number theory", Dover, reprint (1954) (Translated from Russian) MR0062138 |
[Wa] | A. Walfisz, "Weylsche Exponentialsummen in der neueren Zahlentheorie", Deutsch. Verlag Wissenschaft. (1963) MR0220685 |
[KRY] | Kung, Joseph P. S.; Rota, Gian-Carlo; Yan, Catherine H. Combinatorics. The Rota way. Cambridge University Press (2009) ISBN 978-0-521-73794-4 Zbl 1159.05002 |
Möbius function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=M%C3%B6bius_function&oldid=23414