Difference between revisions of "Closure space"
(Importing text file) |
m (→References: isbn link) |
||
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
− | Let | + | Let $S$ be a set and $\mathcal{P}S$ the set of subsets of $S$. A function $K : \mathcal{P}S \rightarrow \mathcal{P}S$ is a ''closure operation'' if for all $A,B \in \mathcal{P}S$: |
− | K1) | + | K1) $A \subseteq K(A)$; |
− | K2) | + | K2) $K(K(A)) \subseteq K(A)$; |
− | K3) | + | K3) $K(A) \subseteq K(A\cup B)$; |
− | K4) | + | K4) $K(A\cup B) \subseteq K(A) \cup K(B)$; |
− | K5) | + | K5) $K(\emptyset) = \emptyset$. |
− | + | These are the ''Kuratowski closure axioms'', and a function $K$ satisfying these axioms is called a ''Kuratowski closure operator'' (or Kuratowski closure operation). | |
− | + | A pair $(S,\mathrm{Cl})$ is a ''closure space'' if and only if $\mathrm{Cl}$ satisfies: | |
+ | $$ | ||
+ | A \subseteq \mathrm{Cl}(B) \Leftrightarrow \mathrm{Cl}(A) \subseteq \mathrm{Cl}(B) \ . | ||
+ | $$ | ||
− | This condition is equivalent to K1)–K3). A closure space that satisfies K5) is a Fréchet | + | This condition is equivalent to K1)–K3). A closure space that satisfies K5) is a Fréchet $V$-space. A Fréchet $V$-space that satisfies K4) is a [[topological space]]. |
− | A Čech closure operator is a mapping | + | A Čech closure operator is a mapping $C : \mathcal{P}S \rightarrow \mathcal{P}S$ such that |
− | C1) | + | C1) $C(\emptyset) = \emptyset$; |
− | C2) ( | + | C2) (${=}$ K1)) $A \subseteq C(A)$; |
− | C3) | + | C3) $C(A \cup B) = C(A) \cup C(B)$. |
+ | |||
+ | A set endowed with a Čech closure operator is called a ''pre-topological space''. | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> N.M. Martin, | + | <table> |
+ | <TR><TD valign="top">[a1]</TD> <TD valign="top"> N.M. Martin, S. Pollard, "Closure spaces and logic" , Kluwer Acad. Publ. (1996)</TD></TR> | ||
+ | <TR><TD valign="top">[a2]</TD> <TD valign="top"> J.L. Kelley, "General topology" , Graduate Texts in Mathematics '''27''' Springer (1975) {{ISBN|0-387-90125-6}} {{ZBL|0306.54002}}</TD></TR> | ||
+ | <TR><TD valign="top">[a3]</TD> <TD valign="top"> D. Dikranjan, W. Tholin, "Categorical structures of closure operators" , Kluwer Acad. Publ. (1996)</TD></TR> | ||
+ | </table> | ||
+ | |||
+ | {{TEX|done}} |
Latest revision as of 17:42, 13 October 2023
Let $S$ be a set and $\mathcal{P}S$ the set of subsets of $S$. A function $K : \mathcal{P}S \rightarrow \mathcal{P}S$ is a closure operation if for all $A,B \in \mathcal{P}S$:
K1) $A \subseteq K(A)$;
K2) $K(K(A)) \subseteq K(A)$;
K3) $K(A) \subseteq K(A\cup B)$;
K4) $K(A\cup B) \subseteq K(A) \cup K(B)$;
K5) $K(\emptyset) = \emptyset$.
These are the Kuratowski closure axioms, and a function $K$ satisfying these axioms is called a Kuratowski closure operator (or Kuratowski closure operation).
A pair $(S,\mathrm{Cl})$ is a closure space if and only if $\mathrm{Cl}$ satisfies: $$ A \subseteq \mathrm{Cl}(B) \Leftrightarrow \mathrm{Cl}(A) \subseteq \mathrm{Cl}(B) \ . $$
This condition is equivalent to K1)–K3). A closure space that satisfies K5) is a Fréchet $V$-space. A Fréchet $V$-space that satisfies K4) is a topological space.
A Čech closure operator is a mapping $C : \mathcal{P}S \rightarrow \mathcal{P}S$ such that
C1) $C(\emptyset) = \emptyset$;
C2) (${=}$ K1)) $A \subseteq C(A)$;
C3) $C(A \cup B) = C(A) \cup C(B)$.
A set endowed with a Čech closure operator is called a pre-topological space.
References
[a1] | N.M. Martin, S. Pollard, "Closure spaces and logic" , Kluwer Acad. Publ. (1996) |
[a2] | J.L. Kelley, "General topology" , Graduate Texts in Mathematics 27 Springer (1975) ISBN 0-387-90125-6 Zbl 0306.54002 |
[a3] | D. Dikranjan, W. Tholin, "Categorical structures of closure operators" , Kluwer Acad. Publ. (1996) |
Closure space. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Closure_space&oldid=13257