Namespaces
Variants
Actions

Difference between revisions of "Discrepancy"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
 
(3 intermediate revisions by 2 users not shown)
Line 1: Line 1:
''of a sequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033030/d0330301.png" /> of points from the unit <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033030/d0330302.png" />-dimensional cube <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033030/d0330303.png" />''
+
''of a sequence $\omega=(\mathbf{x}_1,\ldots,\mathbf{x}_N)$ of points from the unit $s$-dimensional cube $K_s = \{\mathbf{x} : 0 \le x_\nu < 1\,,\ \nu=1,\ldots,s \}$''
  
 
The norm of the functional
 
The norm of the functional
 +
\begin{equation}\label{eq:1}
 +
\phi(\alpha;\omega) = |V| - \frac{N(V)}{N}\,,
 +
\end{equation}
 +
calculated in some metric. Here, $|V|$ and $N(V)$ are, respectively, the volume of the domain $V = \{\mathbf{x} : 0 \le x_\nu < \alpha_\nu\,,\ \nu=1,\ldots,s \}$ and the number of the points of $\omega$ belonging to $V$. If one considers the distribution of the points of $\omega$ over domains of the type $V = \{\mathbf{x} : \alpha_\nu \le x_\nu < \beta_\nu\,,\ \nu=1,\ldots,s \}$, then, in formula (1), $\phi(\alpha;\omega)$ is usually replaced by $\phi(\alpha,\beta;\omega)$.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033030/d0330304.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
+
The following norms of the functional \eqref{eq:1} are most often used:
 +
$$
 +
D_N(\omega) = \sup_{\alpha,\beta\in K_s} |\phi(\alpha,\beta;\omega)|\ ,
 +
$$
 +
$$
 +
D_N^*(\omega) = \sup_{\alpha\in K_s} |\phi(\alpha;\omega)|\ ,
 +
$$
 +
$$
 +
D_N(\omega,L_p) = \left({ \int_0^1\cdots\int_0^1 |\phi(\alpha;\omega)|^p d\alpha_1\ldots d\alpha_s }\right)^{1/p} \ .
 +
$$
  
calculated in some metric. Here, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033030/d0330305.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033030/d0330306.png" /> are, respectively, the volume of the domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033030/d0330307.png" /> and the number of the points of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033030/d0330308.png" /> belonging to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033030/d0330309.png" />. If one considers the distribution of the points of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033030/d03303010.png" /> over domains of the type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033030/d03303011.png" />, then, in formula (1), <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033030/d03303012.png" /> is usually replaced by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033030/d03303013.png" />.
+
A sequence $\omega=(\mathbf{x}_1,\ldots,\mathbf{x}_N,\ldots)$ of points from the $s$-dimensional unit cube $K_s$ is ''uniformly distributed'' if and only if [[#References|[1]]]
 +
$$
 +
\lim_{N\rightarrow\infty} D_N(\omega) = 0 \ .
 +
$$
  
The following norms of the functional (1) are most often used:
+
For any infinite sequence $\omega=(x_1,\ldots,x_N,\ldots)$ of one-dimensional points the following theorem [[#References|[3]]] is valid:
 
+
$$
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033030/d03303014.png" /></td> </tr></table>
+
\limsup N D_N(\omega) = \infty \ .
 
+
$$
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033030/d03303015.png" /></td> </tr></table>
+
For any such sequence $\omega$ it is possible to find a sequence $N_1,\ldots,N_k,\ldots$ such that for $N = N_k$ one has [[#References|[4]]],
 
+
$$
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033030/d03303016.png" /></td> </tr></table>
+
N D_N(\omega) > C_1 \sqrt{\log N} \ .
 
+
$$
A sequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033030/d03303017.png" /> of points from the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033030/d03303018.png" />-dimensional unit cube <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033030/d03303019.png" /> is uniformly distributed if and only if [[#References|[1]]]
+
The final result [[#References|[5]]] for infinite sequences of one-dimensional points is that for $N = N_k$:
 
+
$$
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033030/d03303020.png" /></td> </tr></table>
+
N D_N(\omega) > C_2 \log N \ .
 
+
$$
For any infinite sequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033030/d03303021.png" /> of one-dimensional points the following theorem [[#References|[3]]] is valid:
 
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033030/d03303022.png" /></td> </tr></table>
 
 
 
For any sequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033030/d03303023.png" /> it is possible to find a sequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033030/d03303024.png" /> such that for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033030/d03303025.png" /> one has [[#References|[4]]],
 
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033030/d03303026.png" /></td> </tr></table>
 
 
 
The final result [[#References|[5]]] for infinite sequences of one-dimensional points is that for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033030/d03303027.png" />:
 
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033030/d03303028.png" /></td> </tr></table>
 
  
 
Studies were made of the discrepancies of various concrete sequences [[#References|[6]]]–[[#References|[8]]], and the estimates from above
 
Studies were made of the discrepancies of various concrete sequences [[#References|[6]]]–[[#References|[8]]], and the estimates from above
 +
$$
 +
N D_N(\omega,L_2) \le C_3(s) \log^{s+1} N \ ,
 +
$$
 +
$$
 +
N D_N(\omega) \le C_4(s) \log^s N
 +
$$
 +
were obtained, respectively, for finite and infinite sequences, as well as an estimate from below [[#References|[4]]]: For any sequence of $N$ points, the following inequality is valid:
 +
$$
 +
N D_N(\omega,L_2) \ge C_5(s) \log^{(s+1)/2} N \ .
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033030/d03303029.png" /></td> </tr></table>
+
For any infinite sequence $\omega = \{\mathbf{x}_n  \in K_s \}$ it is possible to find a sequence of numbers $N_1,\ldots,N_k,\ldots$ such that for $N = N_k$ one has
 
+
$$
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033030/d03303030.png" /></td> </tr></table>
+
N D_N(\omega,L_2) \ge C_6(s) \log^{s/2} N \ .
 
+
$$
were obtained, respectively, for finite and infinite sequences, as well as an estimate from below [[#References|[4]]]: For any sequence of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033030/d03303031.png" /> points, the following inequality is valid:
 
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033030/d03303032.png" /></td> </tr></table>
 
 
 
For any infinite sequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033030/d03303033.png" /> it is possible to find a sequence of numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033030/d03303034.png" /> such that for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033030/d03303035.png" /> one has
 
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033030/d03303036.png" /></td> </tr></table>
 
  
 
Also,
 
Also,
 
+
$$
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033030/d03303037.png" /></td> </tr></table>
+
D_N(\omega) \ge D_N(\omega,L_2) \ .
 
+
$$
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  H. Weyl,  "Ueber die Gleichverteilung von Zahlen mod Eins"  ''Math. Ann.'' , '''77'''  (1916)  pp. 313–352</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  J.G. van der Corput,  "Verteilungsfunktionen"  ''Proc. Koninkl. Ned. Akad. Wet. A'' , '''38''' :  8  (1935) pp. 813–821; 1058–1066</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  T. van Aardenne-Ehrenfest,  "On the impossibility of a just distribution"  ''Indag. Math.'' , '''11'''  (1949)  pp. 264–269</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  K.F. Roth,  "On irregularities of distribution"  ''Mathematika'' , '''1'''  (1954)  pp. 73–79</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  W.M. Schmidt,   "Irregularities of distribution VII"  ''Acta Arithm.'' , '''21'''  (1972) pp. 45–50</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  J.H. Halton,  "On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals"  ''Numer. Math.'' , '''2''' :  2  (1960)  pp. 84–90</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top">  I.M. Sobol',  "The distribution of points in a cube and the approximate evaluation of integrals"  ''USSR Comp. Math. and Math. Phys.'' , '''7''' :  4  (1967)  pp. 86–112  ''Zh. Vychisl. Mat. i Mat. Fiz.'' , '''7''' :  4  (1967)  pp. 784–802</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top">  N.M. Korobov,  "Number-theoretical methods in approximate analysis" , Moscow  (1963)  (In Russian)</TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top">  L. Kuipers,  H. Niederreiter,  "Uniform distribution of sequences" , Wiley  (1974)</TD></TR></table>
 
 
 
  
  
 
====Comments====
 
====Comments====
See also [[Distribution modulo one|Distribution modulo one]]; [[Distribution modulo one, higher-dimensional|Distribution modulo one, higher-dimensional]]; [[Uniform distribution|Uniform distribution]].
+
See also [[Distribution modulo one]]; [[Distribution modulo one, higher-dimensional]]; [[Uniform distribution]].
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  J. Beck,  W.L. Chen,  "Irregularities of distribution" , Cambridge Univ. Press  (1987)</TD></TR></table>
+
<table>
 +
<TR><TD valign="top">[1]</TD> <TD valign="top">  H. Weyl,  "Ueber die Gleichverteilung von Zahlen mod Eins"  ''Math. Ann.'' , '''77'''  (1916)  pp. 313–352</TD></TR>
 +
<TR><TD valign="top">[2]</TD> <TD valign="top">  J.G. van der Corput,  "Verteilungsfunktionen"  ''Proc. Koninkl. Ned. Akad. Wet. A'' , '''38''' :  8  (1935)  pp. 813–821; 1058–1066</TD></TR>
 +
<TR><TD valign="top">[3]</TD> <TD valign="top">  T. van Aardenne-Ehrenfest,  "On the impossibility of a just distribution"  ''Indag. Math.'' , '''11'''  (1949)  pp. 264–269</TD></TR>
 +
<TR><TD valign="top">[4]</TD> <TD valign="top">  K.F. Roth,  "On irregularities of distribution"  ''Mathematika'' , '''1'''  (1954)  pp. 73–79  {{ZBL|0057.28604}}</TD></TR>
 +
<TR><TD valign="top">[5]</TD> <TD valign="top">  W.M. Schmidt,  "Irregularities of distribution VII"  ''Acta Arithm.'' , '''21'''  (1972)  pp. 45–50</TD></TR>
 +
<TR><TD valign="top">[6]</TD> <TD valign="top">  J.H. Halton,  "On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals"  ''Numer. Math.'' , '''2''' :  2  (1960)  pp. 84–90</TD></TR>
 +
<TR><TD valign="top">[7]</TD> <TD valign="top">  I.M. Sobol',  "The distribution of points in a cube and the approximate evaluation of integrals"  ''USSR Comp. Math. and Math. Phys.'' , '''7''' :  4  (1967)  pp. 86–112  ''Zh. Vychisl. Mat. i Mat. Fiz.'' , '''7''' :  4  (1967)  pp. 784–802</TD></TR>
 +
<TR><TD valign="top">[8]</TD> <TD valign="top">  N.M. Korobov,  "Number-theoretical methods in approximate analysis" , Moscow  (1963)  (In Russian)</TD></TR>
 +
<TR><TD valign="top">[9]</TD> <TD valign="top">  L. Kuipers,  H. Niederreiter,  "Uniform distribution of sequences" , Wiley  (1974) {{ZBL|0281.10001}}; repr. Dover (2006) {{ISBN|0-486-45019-8}} </TD></TR>
 +
<TR><TD valign="top">[a1]</TD> <TD valign="top">  J. Beck,  W.L. Chen,  "Irregularities of distribution" , Cambridge Univ. Press  (1987) {{ZBL|0617.10039}}</TD></TR>
 +
</table>
 +
 
 +
{{TEX|done}}

Latest revision as of 15:35, 8 October 2023

of a sequence $\omega=(\mathbf{x}_1,\ldots,\mathbf{x}_N)$ of points from the unit $s$-dimensional cube $K_s = \{\mathbf{x} : 0 \le x_\nu < 1\,,\ \nu=1,\ldots,s \}$

The norm of the functional \begin{equation}\label{eq:1} \phi(\alpha;\omega) = |V| - \frac{N(V)}{N}\,, \end{equation} calculated in some metric. Here, $|V|$ and $N(V)$ are, respectively, the volume of the domain $V = \{\mathbf{x} : 0 \le x_\nu < \alpha_\nu\,,\ \nu=1,\ldots,s \}$ and the number of the points of $\omega$ belonging to $V$. If one considers the distribution of the points of $\omega$ over domains of the type $V = \{\mathbf{x} : \alpha_\nu \le x_\nu < \beta_\nu\,,\ \nu=1,\ldots,s \}$, then, in formula (1), $\phi(\alpha;\omega)$ is usually replaced by $\phi(\alpha,\beta;\omega)$.

The following norms of the functional \eqref{eq:1} are most often used: $$ D_N(\omega) = \sup_{\alpha,\beta\in K_s} |\phi(\alpha,\beta;\omega)|\ , $$ $$ D_N^*(\omega) = \sup_{\alpha\in K_s} |\phi(\alpha;\omega)|\ , $$ $$ D_N(\omega,L_p) = \left({ \int_0^1\cdots\int_0^1 |\phi(\alpha;\omega)|^p d\alpha_1\ldots d\alpha_s }\right)^{1/p} \ . $$

A sequence $\omega=(\mathbf{x}_1,\ldots,\mathbf{x}_N,\ldots)$ of points from the $s$-dimensional unit cube $K_s$ is uniformly distributed if and only if [1] $$ \lim_{N\rightarrow\infty} D_N(\omega) = 0 \ . $$

For any infinite sequence $\omega=(x_1,\ldots,x_N,\ldots)$ of one-dimensional points the following theorem [3] is valid: $$ \limsup N D_N(\omega) = \infty \ . $$ For any such sequence $\omega$ it is possible to find a sequence $N_1,\ldots,N_k,\ldots$ such that for $N = N_k$ one has [4], $$ N D_N(\omega) > C_1 \sqrt{\log N} \ . $$ The final result [5] for infinite sequences of one-dimensional points is that for $N = N_k$: $$ N D_N(\omega) > C_2 \log N \ . $$

Studies were made of the discrepancies of various concrete sequences [6][8], and the estimates from above $$ N D_N(\omega,L_2) \le C_3(s) \log^{s+1} N \ , $$ $$ N D_N(\omega) \le C_4(s) \log^s N $$ were obtained, respectively, for finite and infinite sequences, as well as an estimate from below [4]: For any sequence of $N$ points, the following inequality is valid: $$ N D_N(\omega,L_2) \ge C_5(s) \log^{(s+1)/2} N \ . $$

For any infinite sequence $\omega = \{\mathbf{x}_n \in K_s \}$ it is possible to find a sequence of numbers $N_1,\ldots,N_k,\ldots$ such that for $N = N_k$ one has $$ N D_N(\omega,L_2) \ge C_6(s) \log^{s/2} N \ . $$

Also, $$ D_N(\omega) \ge D_N(\omega,L_2) \ . $$


Comments

See also Distribution modulo one; Distribution modulo one, higher-dimensional; Uniform distribution.

References

[1] H. Weyl, "Ueber die Gleichverteilung von Zahlen mod Eins" Math. Ann. , 77 (1916) pp. 313–352
[2] J.G. van der Corput, "Verteilungsfunktionen" Proc. Koninkl. Ned. Akad. Wet. A , 38 : 8 (1935) pp. 813–821; 1058–1066
[3] T. van Aardenne-Ehrenfest, "On the impossibility of a just distribution" Indag. Math. , 11 (1949) pp. 264–269
[4] K.F. Roth, "On irregularities of distribution" Mathematika , 1 (1954) pp. 73–79 Zbl 0057.28604
[5] W.M. Schmidt, "Irregularities of distribution VII" Acta Arithm. , 21 (1972) pp. 45–50
[6] J.H. Halton, "On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals" Numer. Math. , 2 : 2 (1960) pp. 84–90
[7] I.M. Sobol', "The distribution of points in a cube and the approximate evaluation of integrals" USSR Comp. Math. and Math. Phys. , 7 : 4 (1967) pp. 86–112 Zh. Vychisl. Mat. i Mat. Fiz. , 7 : 4 (1967) pp. 784–802
[8] N.M. Korobov, "Number-theoretical methods in approximate analysis" , Moscow (1963) (In Russian)
[9] L. Kuipers, H. Niederreiter, "Uniform distribution of sequences" , Wiley (1974) Zbl 0281.10001; repr. Dover (2006) ISBN 0-486-45019-8
[a1] J. Beck, W.L. Chen, "Irregularities of distribution" , Cambridge Univ. Press (1987) Zbl 0617.10039
How to Cite This Entry:
Discrepancy. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Discrepancy&oldid=14906
This article was adapted from an original article by V.M. Solodov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article