Difference between revisions of "Perfectly-normal space"
From Encyclopedia of Mathematics
(TeX) |
(details) |
||
| (One intermediate revision by one other user not shown) | |||
| Line 1: | Line 1: | ||
{{TEX|done}} | {{TEX|done}} | ||
| − | A [[ | + | A [[normal space]] in which every closed subset is a $G_\delta$-set (cf. [[Set of type F sigma(G delta)|Set of type $F_\sigma$ ($G_\delta$)]]). |
| − | ==== | + | ====References==== |
| + | <table> | ||
| + | <TR><TD valign="top">[a1]</TD> <TD valign="top"> E. Čech, "Topological spaces" , Interscience (1966) pp. 532</TD></TR> | ||
| + | </table> | ||
| − | + | [[Category:General topology]] | |
| − | |||
| − | |||
Latest revision as of 09:30, 16 April 2023
A normal space in which every closed subset is a $G_\delta$-set (cf. Set of type $F_\sigma$ ($G_\delta$)).
References
| [a1] | E. Čech, "Topological spaces" , Interscience (1966) pp. 532 |
How to Cite This Entry:
Perfectly-normal space. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Perfectly-normal_space&oldid=33390
Perfectly-normal space. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Perfectly-normal_space&oldid=33390