Difference between revisions of "Thompson subgroup"
From Encyclopedia of Mathematics
(Importing text file) |
(gather refs) |
||
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
− | + | {{TEX|done}}{{MSC|20D25}} | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
+ | The [[characteristic subgroup]] of a [[P-group|$p$-group]] generated by all Abelian subgroups of maximal order. Introduced by J.G. Thompson [[#References|[1]]]. | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> K. Doerk, T. Hawkes, "Finite soluble groups" , de Gruyter (1992) pp. 214</TD></TR></table> | + | <table> |
+ | <TR><TD valign="top">[1]</TD> <TD valign="top"> J.G. Thompson, "A replacement theorem for $p$-groups and a conjecture" ''J. Algebra'' , '''13''' (1969) pp. 149–151 {{ZBL|0194.03902}}</TD></TR> | ||
+ | <TR><TD valign="top">[2]</TD> <TD valign="top"> D. Gorenstein, "Finite groups" , Harper & Row (1968) {{ZBL|0185.05701}}</TD></TR> | ||
+ | <TR><TD valign="top">[a1]</TD> <TD valign="top"> K. Doerk, T. Hawkes, "Finite soluble groups" , de Gruyter (1992) pp. 214 {{ZBL|0753.20001}}</TD></TR> | ||
+ | </table> |
Latest revision as of 14:51, 8 April 2023
2020 Mathematics Subject Classification: Primary: 20D25 [MSN][ZBL]
The characteristic subgroup of a $p$-group generated by all Abelian subgroups of maximal order. Introduced by J.G. Thompson [1].
References
[1] | J.G. Thompson, "A replacement theorem for $p$-groups and a conjecture" J. Algebra , 13 (1969) pp. 149–151 Zbl 0194.03902 |
[2] | D. Gorenstein, "Finite groups" , Harper & Row (1968) Zbl 0185.05701 |
[a1] | K. Doerk, T. Hawkes, "Finite soluble groups" , de Gruyter (1992) pp. 214 Zbl 0753.20001 |
How to Cite This Entry:
Thompson subgroup. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Thompson_subgroup&oldid=16050
Thompson subgroup. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Thompson_subgroup&oldid=16050
This article was adapted from an original article by N.N. Vil'yams (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article