|
|
(3 intermediate revisions by 2 users not shown) |
Line 1: |
Line 1: |
− | The unique representation of an arbitrary element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i053/i053060/i0530601.png" /> of a non-compact connected semi-simple real [[Lie group|Lie group]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i053/i053060/i0530602.png" /> as a product <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i053/i053060/i0530603.png" /> of elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i053/i053060/i0530604.png" /> of analytic subgroups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i053/i053060/i0530605.png" />, respectively, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i053/i053060/i0530606.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i053/i053060/i0530607.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i053/i053060/i0530608.png" /> are defined as follows. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i053/i053060/i0530609.png" /> be a [[Cartan decomposition|Cartan decomposition]] of the [[Lie algebra|Lie algebra]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i053/i053060/i05306010.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i053/i053060/i05306011.png" />; let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i053/i053060/i05306012.png" /> be the maximal commutative subspace of the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i053/i053060/i05306013.png" />, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i053/i053060/i05306014.png" /> be a nilpotent Lie subalgebra of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i053/i053060/i05306015.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i053/i053060/i05306016.png" /> is the linear hull of the root vectors in some system of positive roots with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i053/i053060/i05306017.png" />. The decomposition of the Lie algebra as the direct sum of the subalgebras <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i053/i053060/i05306018.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i053/i053060/i05306019.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i053/i053060/i05306020.png" /> is called the Iwasawa decomposition [[#References|[1]]] of the semi-simple real Lie algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i053/i053060/i05306021.png" />. The groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i053/i053060/i05306022.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i053/i053060/i05306023.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i053/i053060/i05306024.png" /> are defined to be the analytic subgroups of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i053/i053060/i05306025.png" /> corresponding to the subalgebras <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i053/i053060/i05306026.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i053/i053060/i05306027.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i053/i053060/i05306028.png" />, respectively. The groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i053/i053060/i05306029.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i053/i053060/i05306030.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i053/i053060/i05306031.png" /> are closed; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i053/i053060/i05306032.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i053/i053060/i05306033.png" /> are simply-connected; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i053/i053060/i05306034.png" /> contains the centre of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i053/i053060/i05306035.png" />, and the image of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i053/i053060/i05306036.png" /> under the adjoint representation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i053/i053060/i05306037.png" /> is a maximal compact subgroup of the adjoint group of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i053/i053060/i05306038.png" />. The mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i053/i053060/i05306039.png" /> is an analytic diffeomorphism of the manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i053/i053060/i05306040.png" /> onto the Lie group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i053/i053060/i05306041.png" />. The Iwasawa decomposition plays a fundamental part in the representation theory of semi-simple Lie groups. The Iwasawa decomposition can be defined also for connected semi-simple algebraic groups over a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i053/i053060/i05306042.png" />-adic field (or, more generally, for groups of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i053/i053060/i05306043.png" />-adic type) (see [[#References|[4]]], [[#References|[5]]]). | + | {{TEX|done}} |
− | | + | The unique representation of an arbitrary element $ g $ |
− | ====References====
| + | of a non-compact connected semi-simple real [[Lie group|Lie group]] $ G $ |
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> K. Iwasawa, "On some types of topological groups" ''Ann. of Math.'' , '''50''' (1949) pp. 507–558</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> M.A. Naimark, "Theory of group representations" , Springer (1982) (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> S. Helgason, "Differential geometry, Lie groups, and symmetric spaces" , Acad. Press (1978)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> F. Bruhat, "Sur une classe de sous-groupes compacts maximaux des groupes de Chevalley sur un corps <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i053/i053060/i05306044.png" />-adique" ''Publ. Math. IHES'' , '''23''' (1964) pp. 45–74</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> N. Iwahori, H. Matsumoto, "On some Bruhat decomposition and the structure of the Hecke rings of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i053/i053060/i05306045.png" />-adic Chevalley groups" ''Publ. Math. IHES'' , '''25''' (1965) pp. 5–48</TD></TR></table>
| + | as a product $ g = k an $ |
− | | + | of elements $ k,\ a,\ n $ |
| + | of analytic subgroups $ K,\ A,\ N $ , |
| + | respectively, where $ K $ , |
| + | $ A $ |
| + | and $ N $ |
| + | are defined as follows. Let $ \mathfrak g = \mathfrak k + \mathfrak P $ |
| + | be a [[Cartan decomposition|Cartan decomposition]] of the [[Lie algebra|Lie algebra]] $ \mathfrak g $ |
| + | of $ G $ ; |
| + | let $ \mathfrak a $ |
| + | be the maximal commutative subspace of the space $ \mathfrak P $ , |
| + | and let $ \mathfrak N $ |
| + | be a nilpotent Lie subalgebra of $ \mathfrak g $ |
| + | such that $ \mathfrak N $ |
| + | is the linear hull of the root vectors in some system of positive roots with respect to $ \mathfrak a $ . |
| + | The decomposition of the Lie algebra as the direct sum of the subalgebras $ \mathfrak k $ , |
| + | $ \mathfrak a $ |
| + | and $ \mathfrak N $ |
| + | is called the Iwasawa decomposition [[#References|[1]]] of the semi-simple real Lie algebra $ \mathfrak g $ . |
| + | The groups $ K $ , |
| + | $ A $ |
| + | and $ N $ |
| + | are defined to be the analytic subgroups of $ G $ |
| + | corresponding to the subalgebras $ \mathfrak k $ , |
| + | $ \mathfrak a $ |
| + | and $ \mathfrak N $ , |
| + | respectively. The groups $ K $ , |
| + | $ A $ |
| + | and $ N $ |
| + | are closed; $ A $ |
| + | and $ N $ |
| + | are simply-connected; $ K $ |
| + | contains the centre of $ G $ , |
| + | and the image of $ K $ |
| + | under the adjoint representation of $ G $ |
| + | is a maximal compact subgroup of the adjoint group of $ G $ . |
| + | The mapping $ (k,\ a,\ n) \rightarrow kan $ |
| + | is an analytic diffeomorphism of the manifold $ K \times A \times N $ |
| + | onto the Lie group $ G $ . |
| + | The Iwasawa decomposition plays a fundamental part in the representation theory of semi-simple Lie groups. The Iwasawa decomposition can be defined also for connected semi-simple algebraic groups over a $ p $ - |
| + | adic field (or, more generally, for groups of $ p $ - |
| + | adic type) (see [[#References|[4]]], [[#References|[5]]]). |
| | | |
| | | |
| ====Comments==== | | ====Comments==== |
− | An example of an Iwasawa decomposition is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i053/i053060/i05306046.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i053/i053060/i05306047.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i053/i053060/i05306048.png" /> the subgroup of diagonal matrices of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i053/i053060/i05306049.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i053/i053060/i05306050.png" /> a lower triangular matrix with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i053/i053060/i05306051.png" />'s on the diagonal. So, in particular, every element of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i053/i053060/i05306052.png" /> gets written as a product of a special orthogonal matrix and a lower triangular matrix. | + | An example of an Iwasawa decomposition is $ \mathop{\rm SL}\nolimits _{n} ( \mathbf R ) = K A N $ |
| + | with $ K = \mathop{\rm SO}\nolimits _{n} ( \mathbf R ) $ , |
| + | $ A $ |
| + | the subgroup of diagonal matrices of $ \mathop{\rm SL}\nolimits _{n} ( \mathbf R ) $ |
| + | and $ N $ |
| + | a lower triangular matrix with $ 1 $ ' |
| + | s on the diagonal. So, in particular, every element of $ \mathop{\rm SL}\nolimits _{n} ( \mathbf R ) $ |
| + | gets written as a product of a special orthogonal matrix and a lower triangular matrix. |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> S. Helgason, "Groups and geometric analysis" , Acad. Press (1984) pp. Chapt. II, Sect. 4</TD></TR></table> | + | <table> |
| + | <TR><TD valign="top">[1]</TD> <TD valign="top"> K. Iwasawa, "On some types of topological groups" ''Ann. of Math.'' , '''50''' (1949) pp. 507–558 {{MR|0029911}} {{ZBL|0034.01803}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> M.A. Naimark, "Theory of group representations" , Springer (1982) (Translated from Russian) {{MR|0793377}} {{ZBL|0484.22018}} </TD></TR> |
| + | <TR><TD valign="top">[3]</TD> <TD valign="top"> S. Helgason, "Differential geometry, Lie groups, and symmetric spaces" , Acad. Press (1978) {{MR|0514561}} {{ZBL|0451.53038}} </TD></TR> |
| + | <TR><TD valign="top">[4]</TD> <TD valign="top"> F. Bruhat, "Sur une classe de sous-groupes compacts maximaux des groupes de Chevalley sur un corps $\mathfrak{p}$-adique" ''Publ. Math. IHES'' , '''23''' (1964) pp. 45–74 {{MR|179298}} {{ZBL|}} </TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> N. Iwahori, H. Matsumoto, "On some Bruhat decomposition and the structure of the Hecke rings of $\mathfrak{p}$-adic Chevalley groups" ''Publ. Math. IHES'' , '''25''' (1965) pp. 5–48 {{MR|185016}} {{ZBL|}} </TD></TR> |
| + | <TR><TD valign="top">[a1]</TD> <TD valign="top"> S. Helgason, "Groups and geometric analysis" , Acad. Press (1984) pp. Chapt. II, Sect. 4 {{MR|0754767}} {{ZBL|0543.58001}} </TD></TR> |
| + | </table> |
The unique representation of an arbitrary element $ g $
of a non-compact connected semi-simple real Lie group $ G $
as a product $ g = k an $
of elements $ k,\ a,\ n $
of analytic subgroups $ K,\ A,\ N $ ,
respectively, where $ K $ ,
$ A $
and $ N $
are defined as follows. Let $ \mathfrak g = \mathfrak k + \mathfrak P $
be a Cartan decomposition of the Lie algebra $ \mathfrak g $
of $ G $ ;
let $ \mathfrak a $
be the maximal commutative subspace of the space $ \mathfrak P $ ,
and let $ \mathfrak N $
be a nilpotent Lie subalgebra of $ \mathfrak g $
such that $ \mathfrak N $
is the linear hull of the root vectors in some system of positive roots with respect to $ \mathfrak a $ .
The decomposition of the Lie algebra as the direct sum of the subalgebras $ \mathfrak k $ ,
$ \mathfrak a $
and $ \mathfrak N $
is called the Iwasawa decomposition [1] of the semi-simple real Lie algebra $ \mathfrak g $ .
The groups $ K $ ,
$ A $
and $ N $
are defined to be the analytic subgroups of $ G $
corresponding to the subalgebras $ \mathfrak k $ ,
$ \mathfrak a $
and $ \mathfrak N $ ,
respectively. The groups $ K $ ,
$ A $
and $ N $
are closed; $ A $
and $ N $
are simply-connected; $ K $
contains the centre of $ G $ ,
and the image of $ K $
under the adjoint representation of $ G $
is a maximal compact subgroup of the adjoint group of $ G $ .
The mapping $ (k,\ a,\ n) \rightarrow kan $
is an analytic diffeomorphism of the manifold $ K \times A \times N $
onto the Lie group $ G $ .
The Iwasawa decomposition plays a fundamental part in the representation theory of semi-simple Lie groups. The Iwasawa decomposition can be defined also for connected semi-simple algebraic groups over a $ p $ -
adic field (or, more generally, for groups of $ p $ -
adic type) (see [4], [5]).
An example of an Iwasawa decomposition is $ \mathop{\rm SL}\nolimits _{n} ( \mathbf R ) = K A N $
with $ K = \mathop{\rm SO}\nolimits _{n} ( \mathbf R ) $ ,
$ A $
the subgroup of diagonal matrices of $ \mathop{\rm SL}\nolimits _{n} ( \mathbf R ) $
and $ N $
a lower triangular matrix with $ 1 $ '
s on the diagonal. So, in particular, every element of $ \mathop{\rm SL}\nolimits _{n} ( \mathbf R ) $
gets written as a product of a special orthogonal matrix and a lower triangular matrix.
References
[1] | K. Iwasawa, "On some types of topological groups" Ann. of Math. , 50 (1949) pp. 507–558 MR0029911 Zbl 0034.01803 |
[2] | M.A. Naimark, "Theory of group representations" , Springer (1982) (Translated from Russian) MR0793377 Zbl 0484.22018 |
[3] | S. Helgason, "Differential geometry, Lie groups, and symmetric spaces" , Acad. Press (1978) MR0514561 Zbl 0451.53038 |
[4] | F. Bruhat, "Sur une classe de sous-groupes compacts maximaux des groupes de Chevalley sur un corps $\mathfrak{p}$-adique" Publ. Math. IHES , 23 (1964) pp. 45–74 MR179298 |
[5] | N. Iwahori, H. Matsumoto, "On some Bruhat decomposition and the structure of the Hecke rings of $\mathfrak{p}$-adic Chevalley groups" Publ. Math. IHES , 25 (1965) pp. 5–48 MR185016 |
[a1] | S. Helgason, "Groups and geometric analysis" , Acad. Press (1984) pp. Chapt. II, Sect. 4 MR0754767 Zbl 0543.58001 |