Difference between revisions of "Comitant"
Ulf Rehmann (talk | contribs) m (MR/ZBL numbers added) |
m (→References: details) |
||
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
− | ''concomitant of a group | + | {{TEX|done}} |
+ | ''concomitant of a group $ G $ | ||
+ | acting on sets $ X $ | ||
+ | and $ Y $ '' | ||
− | |||
− | + | A mapping $ \phi : \ X \rightarrow Y $ | |
+ | such that$$ | ||
+ | g ( \phi (x)) = | ||
+ | \phi (g (x)) | ||
+ | $$ | ||
+ | for any $ g \in G $ , | ||
+ | $ x \in X $ . | ||
+ | In this case one also says that $ \phi $ | ||
+ | commutes with the action of $ G $ , | ||
+ | or that $ \phi $ | ||
+ | is an equivariant mapping. If $ G $ | ||
+ | acts on every set of a family $ \{ {X _{i}} : {i \in I} \} $ , | ||
+ | then a comitant $ \prod _ {i \in I} X _{i} \rightarrow Y $ | ||
+ | is called a simultaneous comitant of $ G $ . | ||
− | |||
− | The notion of a comitant originates from the classical theory of invariants (cf. [[Invariants, theory of|Invariants, theory of]]) in which, however, a comitant is understood in a narrower sense: | + | The notion of a comitant originates from the classical theory of invariants (cf. [[Invariants, theory of|Invariants, theory of]]) in which, however, a comitant is understood in a narrower sense: $ G $ |
+ | is the general linear group of some finite-dimensional vector space $ U $ , | ||
+ | $ X $ | ||
+ | and $ Y $ | ||
+ | are tensor spaces on $ U $ | ||
+ | of specified (generally distinct) types, on which $ G $ | ||
+ | acts in the natural way, while $ \phi $ | ||
+ | is an equivariant polynomial mapping from $ X $ | ||
+ | into $ Y $ . | ||
+ | If, in addition, $ Y $ | ||
+ | is a space of covariant tensors, then the comitant is called a covariant of $ G $ , | ||
+ | while if $ Y $ | ||
+ | is a space of contravariant tensors, the comitant is called a contravariant of $ G $ . | ||
− | |||
− | + | Example. Let $ f $ | |
+ | be a binary cubic form in the variables $ x $ | ||
+ | and $ y $ : | ||
+ | $$ | ||
+ | f = a _{0} x ^{3} + | ||
+ | 3a _{1} x ^{2} y + | ||
+ | 3a _{2} xy ^{2} + | ||
+ | a _{3} y ^{3} . | ||
+ | $$ | ||
+ | Its coefficients are the coordinates of a covariant symmetric tensor. The coefficients of the Hessian form of $ f $ , | ||
+ | that is, of the form$$ | ||
+ | H = { | ||
+ | \frac{1}{36} | ||
+ | } | ||
+ | \left | | ||
− | + | \begin{array}{cc} | |
− | + | \frac{\partial ^{2} f}{\partial x ^{2}} | |
+ | & | ||
+ | \frac{\partial ^{2} f}{\partial x \partial y} | ||
+ | \\ | ||
− | + | \frac{\partial ^{2} f}{\partial x \partial y} | |
+ | & | ||
+ | \frac{\partial ^{2} f}{\partial y ^{2}} | ||
+ | \\ | ||
+ | \end{array} | ||
+ | \ | ||
+ | \right | = | ||
+ | $$ | ||
+ | $$ | ||
+ | = | ||
+ | (a _{0} a _{2} - a _{1} ^{2} ) x ^{2} | ||
+ | + (a _{0} a _{3} - a _{1} a _{2} ) xy + (a _{1} a _{3} - a _{2} ^{2} ) y ^{2} | ||
+ | $$ | ||
+ | are also the coefficients of a covariant symmetric tensor, while the mapping$$ | ||
+ | (a _{0} ,\ a _{1} ,\ a _{2} ,\ a _{3} ) \mapsto | ||
+ | \left ( | ||
+ | a _{0} a _{2} - a _{1} ^{2} ,\ | ||
+ | { | ||
+ | \frac{1}{2} | ||
+ | } | ||
+ | (a _{0} a _{3} - a _{1} a _{2} ),\ | ||
+ | a _{1} a _{3} - a _{2} ^{2} | ||
+ | \right ) | ||
+ | $$ | ||
+ | of the corresponding tensor spaces is a comitant (the so-called comitant of the form $ f \ $ ). | ||
+ | The Hessian of an arbitrary form can similarly be defined; this also provides an example of a comitant (see [[Covariant|Covariant]]). | ||
− | + | In the modern geometric theory of invariants, by a comitant one often means any equivariant morphism $ X \rightarrow Y $ , | |
− | + | where $ X $ | |
− | + | and $ Y $ | |
− | + | are algebraic varieties endowed with a regular action of an algebraic group $ G $ . | |
− | + | If $ X $ | |
− | + | and $ Y $ | |
− | In the modern geometric theory of invariants, by a comitant one often means any equivariant morphism | + | are affine, then giving a comitant is equivalent to giving a homomorphism $ k [Y] \rightarrow k [X] $ |
+ | of $ G $ - | ||
+ | modules of regular functions on the varieties $ Y $ | ||
+ | and $ X $ , | ||
+ | respectively (where $ k $ | ||
+ | is the ground field). | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> G.B. Gurevich, "Foundations of the theory of algebraic invariants" , Noordhoff (1964) (Translated from Russian) {{MR|0183733}} {{ZBL|0128.24601}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> D. Mumford, "Geometric invariant theory" , Springer (1965) {{MR|0214602}} {{ZBL|0147.39304}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> J.A. Dieudonné, "La géométrie des | + | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> G.B. Gurevich, "Foundations of the theory of algebraic invariants" , Noordhoff (1964) (Translated from Russian) {{MR|0183733}} {{ZBL|0128.24601}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> D. Mumford, "Geometric invariant theory" , Springer (1965) {{MR|0214602}} {{ZBL|0147.39304}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> J.A. Dieudonné, "La géométrie des groupes classiques" , Springer (1955) {{MR|}} {{ZBL|0221.20056}} </TD></TR></table> |
Latest revision as of 13:16, 7 April 2023
concomitant of a group $ G $ acting on sets $ X $ and $ Y $
A mapping $ \phi : \ X \rightarrow Y $
such that$$
g ( \phi (x)) =
\phi (g (x))
$$
for any $ g \in G $ ,
$ x \in X $ .
In this case one also says that $ \phi $
commutes with the action of $ G $ ,
or that $ \phi $
is an equivariant mapping. If $ G $
acts on every set of a family $ \{ {X _{i}} : {i \in I} \} $ ,
then a comitant $ \prod _ {i \in I} X _{i} \rightarrow Y $
is called a simultaneous comitant of $ G $ .
The notion of a comitant originates from the classical theory of invariants (cf. Invariants, theory of) in which, however, a comitant is understood in a narrower sense: $ G $
is the general linear group of some finite-dimensional vector space $ U $ ,
$ X $
and $ Y $
are tensor spaces on $ U $
of specified (generally distinct) types, on which $ G $
acts in the natural way, while $ \phi $
is an equivariant polynomial mapping from $ X $
into $ Y $ .
If, in addition, $ Y $
is a space of covariant tensors, then the comitant is called a covariant of $ G $ ,
while if $ Y $
is a space of contravariant tensors, the comitant is called a contravariant of $ G $ .
Example. Let $ f $
be a binary cubic form in the variables $ x $
and $ y $ :
$$
f = a _{0} x ^{3} +
3a _{1} x ^{2} y +
3a _{2} xy ^{2} +
a _{3} y ^{3} .
$$
Its coefficients are the coordinates of a covariant symmetric tensor. The coefficients of the Hessian form of $ f $ ,
that is, of the form$$
H = {
\frac{1}{36}
}
\left |
\begin{array}{cc}
\frac{\partial ^{2} f}{\partial x ^{2}}
&
\frac{\partial ^{2} f}{\partial x \partial y}
\\
\frac{\partial ^{2} f}{\partial x \partial y}
&
\frac{\partial ^{2} f}{\partial y ^{2}}
\\
\end{array}
\
\right | =
$$
$$
=
(a _{0} a _{2} - a _{1} ^{2} ) x ^{2}
+ (a _{0} a _{3} - a _{1} a _{2} ) xy + (a _{1} a _{3} - a _{2} ^{2} ) y ^{2}
$$
are also the coefficients of a covariant symmetric tensor, while the mapping$$
(a _{0} ,\ a _{1} ,\ a _{2} ,\ a _{3} ) \mapsto
\left (
a _{0} a _{2} - a _{1} ^{2} ,\
{
\frac{1}{2}
}
(a _{0} a _{3} - a _{1} a _{2} ),\
a _{1} a _{3} - a _{2} ^{2}
\right )
$$
of the corresponding tensor spaces is a comitant (the so-called comitant of the form $ f \ $ ).
The Hessian of an arbitrary form can similarly be defined; this also provides an example of a comitant (see Covariant).
In the modern geometric theory of invariants, by a comitant one often means any equivariant morphism $ X \rightarrow Y $ , where $ X $ and $ Y $ are algebraic varieties endowed with a regular action of an algebraic group $ G $ . If $ X $ and $ Y $ are affine, then giving a comitant is equivalent to giving a homomorphism $ k [Y] \rightarrow k [X] $ of $ G $ - modules of regular functions on the varieties $ Y $ and $ X $ , respectively (where $ k $ is the ground field).
References
[1] | G.B. Gurevich, "Foundations of the theory of algebraic invariants" , Noordhoff (1964) (Translated from Russian) MR0183733 Zbl 0128.24601 |
[2] | D. Mumford, "Geometric invariant theory" , Springer (1965) MR0214602 Zbl 0147.39304 |
[3] | J.A. Dieudonné, "La géométrie des groupes classiques" , Springer (1955) Zbl 0221.20056 |
Comitant. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Comitant&oldid=21827