|
|
(3 intermediate revisions by 2 users not shown) |
Line 1: |
Line 1: |
− | A construction used in the study of quadratic forms over fields of characteristic 2, which allows one, in particular, to introduce analogues of the special orthogonal group over such fields. In fact, a Dickson invariant is an element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031630/d0316301.png" /> of a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031630/d0316302.png" /> of characteristic 2 associated to any [[Similarity|similarity]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031630/d0316303.png" /> of a countable-dimensional vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031630/d0316304.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031630/d0316305.png" /> with respect to the symmetric bilinear form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031630/d0316306.png" /> associated with a non-degenerate quadratic form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031630/d0316307.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031630/d0316308.png" />. Introduced by L.E. Dickson [[#References|[1]]]. | + | {{TEX|done}} |
| + | A construction used in the study of quadratic forms over fields of characteristic 2, which allows one, in particular, to introduce analogues of the special orthogonal group over such fields. In fact, a Dickson invariant is an element $D(u)$ of a field $k$ of characteristic 2 associated to any [[Similarity|similarity]] $u$ of a countable-dimensional vector space $E$ over $k$ with respect to the symmetric bilinear form $f$ associated with a non-degenerate quadratic form $Q$ on $E$. Introduced by L.E. Dickson [[#References|[1]]]. |
| | | |
− | By virtue of the condition imposed on the characteristic of the field, the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031630/d0316309.png" /> is alternating and there exists a basis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031630/d03163010.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031630/d03163011.png" /> for which | + | By virtue of the condition imposed on the characteristic of the field, the form $f$ is alternating and there exists a basis $e_1,\dotsc,e_{2s}$ in $E$ for which |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031630/d03163012.png" /></td> </tr></table>
| + | $$f(e_i,e_j)=f(e_{s+i},e_{s+j})=0,$$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031630/d03163013.png" /></td> </tr></table>
| + | $$f(e_i,e_{s+j})=\delta_{ij},$$ |
| | | |
− | for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031630/d03163014.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031630/d03163015.png" /> (cf. [[Witt decomposition|Witt decomposition]]). Let | + | for $1\leq i\leq s$, $1\leq j\leq s$ (cf. [[Witt decomposition|Witt decomposition]]). Let |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031630/d03163016.png" /></td> </tr></table>
| + | $$f(u(x),u(y))=\alpha(u)f(x,y)$$ |
| | | |
− | for any vectors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031630/d03163017.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031630/d03163018.png" /> from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031630/d03163019.png" />, and let, for each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031630/d03163020.png" />, | + | for any vectors $x$ and $y$ from $E$, and let, for each $i=1,\dotsc,s$, |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031630/d03163021.png" /></td> </tr></table>
| + | $$u(e_i)=\sum_{j=1}^sa_{ij}e_j+\sum_{j=1}^sb_{ij}e_{s+j},$$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031630/d03163022.png" /></td> </tr></table>
| + | $$u(e_{s+i})=\sum_{j=1}^sc_{ij}e_j+\sum_{j=1}^sd_{ij}e_{s+j}.$$ |
| | | |
− | Then the following element from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031630/d03163023.png" />: | + | Then the following element from $k$: |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031630/d03163024.png" /></td> </tr></table>
| + | $$D(u)=\sum_{i,j}(Q(e_i)a_{ij}c_{ij}+Q(e_{s+i})b_{ij}d_{ij}+b_{ij}c_{ij})$$ |
| | | |
− | is called the Dickson invariant of the similarity <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031630/d03163025.png" /> with respect to the basis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031630/d03163026.png" />. For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031630/d03163027.png" /> to be a similarity with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031630/d03163028.png" /> with similarity coefficient <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031630/d03163029.png" /> (i.e. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031630/d03163030.png" /> for any vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031630/d03163031.png" />) it is necessary and sufficient that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031630/d03163032.png" /> or that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031630/d03163033.png" />. Similarities <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031630/d03163034.png" /> with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031630/d03163035.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031630/d03163036.png" /> are called direct similarities. The direct similarities form a normal subgroup of index 2 in the group of all similarities with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031630/d03163037.png" />. | + | is called the Dickson invariant of the similarity $u$ with respect to the basis $e_1,\dotsc,e_{2s}$. For $u$ to be a similarity with respect to $Q$ with similarity coefficient $\alpha(u)$ (i.e. $Q(u(x))=\alpha(u)Q(x)$ for any vector $x\in E$) it is necessary and sufficient that $D(u)=0$ or that $D(u)=\alpha(u)$. Similarities $u$ with respect to $Q$ for which $D(u)=0$ are called direct similarities. The direct similarities form a normal subgroup of index 2 in the group of all similarities with respect to $Q$. |
| | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031630/d03163038.png" /> is the form defined by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031630/d03163039.png" /> for any vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031630/d03163040.png" />, and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031630/d03163041.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031630/d03163042.png" /> are the pseudo-discriminants of these forms with respect to the basis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031630/d03163043.png" />, i.e. | + | If $Q_1$ is the form defined by $Q_1(x)=Q(u(x))$ for any vector $x\in E$, and if $\Delta(Q)$ and $\Delta(Q_1)$ are the pseudo-discriminants of these forms with respect to the basis $e_1,\dotsc,e_{2s}$, i.e. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031630/d03163044.png" /></td> </tr></table>
| + | $$\Delta(Q)=Q(e_1)Q(e_{s+1})+\dotsb+Q(e_s)Q(e_{2s}),$$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031630/d03163045.png" /></td> </tr></table>
| + | $$\Delta(Q_1)=Q_1(e_1)Q_1(e_{s+1})+\dotsb+Q_1(e_s)Q_1(e_{2s}),$$ |
| | | |
| then | | then |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031630/d03163046.png" /></td> </tr></table>
| + | $$\Delta(Q_1)=(\alpha(u))^2\Delta(Q)+(D(u))^2+\alpha(u)D(u).$$ |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> L.E. Dickson, "Linear groups" , Teubner (1901)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> N. Bourbaki, "Elements of mathematics. Algebra: Modules. Rings. Forms" , '''2''' , Addison-Wesley (1975) pp. Chapt.4;5;6 (Translated from French)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> J.A. Dieudonné, "La géométrie des groups classiques" , Springer (1955)</TD></TR></table> | + | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> L.E. Dickson, "Linear groups" , Teubner (1901) {{MR|1505871}} {{MR|1500573}} {{ZBL|32.0134.03}} {{ZBL|32.0131.03}} {{ZBL|32.0131.01}} {{ZBL|32.0128.01}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> N. Bourbaki, "Elements of mathematics. Algebra: Modules. Rings. Forms" , '''2''' , Addison-Wesley (1975) pp. Chapt.4;5;6 (Translated from French) {{MR|2333539}} {{MR|2327161}} {{MR|2325344}} {{MR|2284892}} {{MR|2272929}} {{MR|0928386}} {{MR|0896478}} {{MR|0782297}} {{MR|0782296}} {{MR|0722608}} {{MR|0682756}} {{MR|0643362}} {{MR|0647314}} {{MR|0610795}} {{MR|0583191}} {{MR|0354207}} {{MR|0360549}} {{MR|0237342}} {{MR|0205211}} {{MR|0205210}} {{ZBL|}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> J.A. Dieudonné, "La géométrie des groupes classiques" , Springer (1955) {{MR|}} {{ZBL|0221.20056}} </TD></TR></table> |
A construction used in the study of quadratic forms over fields of characteristic 2, which allows one, in particular, to introduce analogues of the special orthogonal group over such fields. In fact, a Dickson invariant is an element $D(u)$ of a field $k$ of characteristic 2 associated to any similarity $u$ of a countable-dimensional vector space $E$ over $k$ with respect to the symmetric bilinear form $f$ associated with a non-degenerate quadratic form $Q$ on $E$. Introduced by L.E. Dickson [1].
By virtue of the condition imposed on the characteristic of the field, the form $f$ is alternating and there exists a basis $e_1,\dotsc,e_{2s}$ in $E$ for which
$$f(e_i,e_j)=f(e_{s+i},e_{s+j})=0,$$
$$f(e_i,e_{s+j})=\delta_{ij},$$
for $1\leq i\leq s$, $1\leq j\leq s$ (cf. Witt decomposition). Let
$$f(u(x),u(y))=\alpha(u)f(x,y)$$
for any vectors $x$ and $y$ from $E$, and let, for each $i=1,\dotsc,s$,
$$u(e_i)=\sum_{j=1}^sa_{ij}e_j+\sum_{j=1}^sb_{ij}e_{s+j},$$
$$u(e_{s+i})=\sum_{j=1}^sc_{ij}e_j+\sum_{j=1}^sd_{ij}e_{s+j}.$$
Then the following element from $k$:
$$D(u)=\sum_{i,j}(Q(e_i)a_{ij}c_{ij}+Q(e_{s+i})b_{ij}d_{ij}+b_{ij}c_{ij})$$
is called the Dickson invariant of the similarity $u$ with respect to the basis $e_1,\dotsc,e_{2s}$. For $u$ to be a similarity with respect to $Q$ with similarity coefficient $\alpha(u)$ (i.e. $Q(u(x))=\alpha(u)Q(x)$ for any vector $x\in E$) it is necessary and sufficient that $D(u)=0$ or that $D(u)=\alpha(u)$. Similarities $u$ with respect to $Q$ for which $D(u)=0$ are called direct similarities. The direct similarities form a normal subgroup of index 2 in the group of all similarities with respect to $Q$.
If $Q_1$ is the form defined by $Q_1(x)=Q(u(x))$ for any vector $x\in E$, and if $\Delta(Q)$ and $\Delta(Q_1)$ are the pseudo-discriminants of these forms with respect to the basis $e_1,\dotsc,e_{2s}$, i.e.
$$\Delta(Q)=Q(e_1)Q(e_{s+1})+\dotsb+Q(e_s)Q(e_{2s}),$$
$$\Delta(Q_1)=Q_1(e_1)Q_1(e_{s+1})+\dotsb+Q_1(e_s)Q_1(e_{2s}),$$
then
$$\Delta(Q_1)=(\alpha(u))^2\Delta(Q)+(D(u))^2+\alpha(u)D(u).$$
References