Difference between revisions of "Catenary"
(Importing text file) |
m (OldImage template added) |
||
(3 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
+ | {{TEX|done}} | ||
The plane transcendental curve describing the form of a homogeneous flexible string of fixed length and with fixed ends attained under the action of gravity (see Fig.). | The plane transcendental curve describing the form of a homogeneous flexible string of fixed length and with fixed ends attained under the action of gravity (see Fig.). | ||
Line 6: | Line 7: | ||
In Cartesian coordinates its equation is | In Cartesian coordinates its equation is | ||
+ | $$ | ||
+ | y= \frac{a}{2} \left( e^{x/a} + e^{-x/a} \right) = a \cosh \frac{x}{a} | ||
+ | $$ | ||
− | + | The length of an arc beginning at the point $x=0$ is | |
− | + | $$ | |
− | The length of an arc beginning at the point | + | l= \frac{1}{2} \left( e^{x/a} - e^{-x/a} \right) = a \sinh \frac{x}{a} |
− | + | $$ | |
− | |||
The radius of curvature is | The radius of curvature is | ||
+ | $$ | ||
+ | r= a \cosh^2 \frac{x}{a} | ||
+ | $$ | ||
− | + | The area bounded by an arc of the catenary, two of its ordinates and the $y$-axis is | |
− | + | $$ | |
− | The area bounded by an arc of the catenary, two of its ordinates and the | + | S = a \sqrt{ y_2^2 - a^2 } - a \sqrt{ y_1^2 - a^2 } = a^2 \left( \sinh \frac{x_2}{a} - \sinh \frac{x_1}{a} \right) |
− | + | $$ | |
− | |||
− | |||
− | |||
− | If an arc of a catenary is rotated around the | + | If an arc of a catenary is rotated around the $x$-axis, it forms a [[Catenoid|catenoid]]. |
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> A.A. Savelov, "Planar curves" , Moscow (1960) (In Russian)</TD></TR></table> | + | <table> |
− | + | <TR><TD valign="top">[1]</TD> <TD valign="top"> A.A. Savelov, "Planar curves" , Moscow (1960) (In Russian)</TD></TR> | |
+ | <TR><TD valign="top">[a1]</TD> <TD valign="top"> J.D. Lawrence, "A catalog of special plane curves" , Dover, reprint (1972)</TD></TR> | ||
+ | </table> | ||
− | + | {{OldImage}} | |
− | |||
− | |||
− | |||
− | |||
− |
Latest revision as of 09:19, 26 March 2023
The plane transcendental curve describing the form of a homogeneous flexible string of fixed length and with fixed ends attained under the action of gravity (see Fig.).
Figure: c020790a
In Cartesian coordinates its equation is $$ y= \frac{a}{2} \left( e^{x/a} + e^{-x/a} \right) = a \cosh \frac{x}{a} $$
The length of an arc beginning at the point $x=0$ is $$ l= \frac{1}{2} \left( e^{x/a} - e^{-x/a} \right) = a \sinh \frac{x}{a} $$
The radius of curvature is $$ r= a \cosh^2 \frac{x}{a} $$
The area bounded by an arc of the catenary, two of its ordinates and the $y$-axis is $$ S = a \sqrt{ y_2^2 - a^2 } - a \sqrt{ y_1^2 - a^2 } = a^2 \left( \sinh \frac{x_2}{a} - \sinh \frac{x_1}{a} \right) $$
If an arc of a catenary is rotated around the $x$-axis, it forms a catenoid.
References
[1] | A.A. Savelov, "Planar curves" , Moscow (1960) (In Russian) |
[a1] | J.D. Lawrence, "A catalog of special plane curves" , Dover, reprint (1972) |
Catenary. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Catenary&oldid=16508