Difference between revisions of "Papperitz equation"
Ulf Rehmann (talk | contribs) m (MR/ZBL numbers added) |
m (fixing fractions) |
||
(3 intermediate revisions by one other user not shown) | |||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | p0711301.png | ||
+ | $#A+1 = 53 n = 3 | ||
+ | $#C+1 = 53 : ~/encyclopedia/old_files/data/P071/P.0701130 Papperitz equation | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
An ordinary second-order Fuchsian linear differential equation having precisely three singular points: | An ordinary second-order Fuchsian linear differential equation having precisely three singular points: | ||
− | + | $$ \tag{1 } | |
+ | w ^ {\prime\prime } + \left ( | ||
+ | \frac{1 - \alpha - \alpha ^ \prime }{z- | ||
+ | a} + | ||
+ | \frac{1 - \beta - \beta ^ \prime | ||
+ | }{z- | ||
+ | b} + | ||
+ | \frac{1- \gamma - \gamma ^ \prime }{z- | ||
+ | c} \right ) w ^ \prime + | ||
+ | $$ | ||
+ | |||
+ | $$ | ||
+ | + | ||
+ | \left [ | ||
+ | \frac{\alpha \alpha ^ \prime ( a- b)( a- c) }{z- | ||
+ | a} | ||
+ | + | ||
+ | \frac{\beta \beta ^ \prime ( b- c)( b- a) }{z- | ||
+ | b}\right . + | ||
+ | $$ | ||
+ | |||
+ | $$ | ||
+ | + \left . | ||
− | + | \frac{\gamma \gamma ^ \prime ( c- a)( c- b) }{z- | |
+ | c} \right ] | ||
+ | \frac{w}{(z- a)( z- b)( z- c)} = 0 , | ||
+ | $$ | ||
− | + | $$ | |
+ | \alpha + \alpha ^ \prime + \beta + \beta ^ \prime + \gamma + \gamma ^ \prime = 1; | ||
+ | $$ | ||
− | + | here $ a, b, c $ | |
+ | are pairwise distinct complex numbers, $ \alpha , \alpha ^ \prime $( | ||
+ | $ \beta , \beta ^ \prime $ | ||
+ | and $ \gamma , \gamma ^ \prime $) | ||
+ | are the characteristic exponents at the singular point $ z= a $( | ||
+ | respectively, $ z= b $ | ||
+ | and $ z= c $). | ||
+ | A Papperitz equation is uniquely determined by the assignment of the singular points and the characteristic exponents. In solving a Papperitz equation (1), use is made of Riemann's notation: | ||
− | + | $$ | |
+ | w = P \left \{ | ||
− | + | \begin{array}{llll} | |
+ | a & b & c &{} \\ | ||
+ | \alpha &\beta &\gamma & z \\ | ||
+ | \alpha ^ \prime &\beta ^ \prime &\gamma ^ \prime &{} \\ | ||
+ | \end{array} | ||
+ | \right \} . | ||
+ | $$ | ||
− | B. Riemann investigated [[#References|[1]]] the problem of finding all many-valued functions | + | B. Riemann investigated [[#References|[1]]] the problem of finding all many-valued functions $ w( z) $, |
+ | analytic in the extended complex plane, which have the following properties: | ||
− | a) the function | + | a) the function $ w( z) $ |
+ | has precisely three singular points $ a, b, c $; | ||
b) any three of its branches are connected by a linear equation | b) any three of its branches are connected by a linear equation | ||
− | + | $$ | |
+ | A _ {1} w _ {1} ( z) + A _ {2} w _ {2} ( z) + A _ {3} w _ {3} ( z) = 0 | ||
+ | $$ | ||
with constant coefficients; | with constant coefficients; | ||
− | c) the function | + | c) the function $ w( z) $ |
+ | has the simplest singularities at the points $ a, b, c $; | ||
+ | namely, in a neighbourhood of the point $ z= a $ | ||
+ | there are two branches $ \widetilde{w} _ {1} ( z) $ | ||
+ | and $ \widetilde{w} _ {2} ( z) $ | ||
+ | satisfying | ||
− | + | $$ | |
+ | \widetilde{w} _ {1} ( z) = \ | ||
+ | ( z- a) ^ \alpha \phi _ {1} ( z) ,\ \ | ||
+ | \widetilde{w} _ {2} ( z) = \ | ||
+ | ( z- a) ^ {\alpha ^ \prime } \phi _ {2} ( z) , | ||
+ | $$ | ||
− | where | + | where $ \phi _ {j} ( z) $ |
+ | $ ( j = 1, 2) $ | ||
+ | is holomorphic at $ z= a $; | ||
+ | and analogously for $ b $ | ||
+ | and $ c $. | ||
− | Riemann, under certain additional assumptions on the numbers | + | Riemann, under certain additional assumptions on the numbers $ \alpha , \alpha ^ \prime \dots \gamma ^ \prime $, |
+ | showed that all such functions can be expressed in terms of hypergeometric functions and that $ w( z) $ | ||
+ | satisfies a linear second-order differential equation with rational coefficients, but did not write this equation out explicitly (see [[#References|[1]]]). The equation in question, (1), was given by E. Papperitz [[#References|[2]]]. It is also called the Riemann $ P $- | ||
+ | equation, the Riemann equation in Papperitz's form and the Riemann equation, and its solutions are called $ P $- | ||
+ | functions. | ||
The basic properties of the solutions of a Papperitz equation are as follows. | The basic properties of the solutions of a Papperitz equation are as follows. | ||
− | 1) A Papperitz equation is invariant under rational-linear transformations: If | + | 1) A Papperitz equation is invariant under rational-linear transformations: If $ z _ {1} = ( Az + b)/( Cz + D) $ |
+ | maps the points $ a, b, c $ | ||
+ | to points $ a _ {1} , b _ {1} , c _ {1} $, | ||
+ | then | ||
+ | |||
+ | $$ | ||
+ | P \left \{ | ||
+ | |||
+ | \begin{array}{llll} | ||
+ | a & b & c &{} \\ | ||
+ | \alpha &\beta &\gamma & z \\ | ||
+ | \alpha ^ \prime &\beta ^ \prime &\gamma ^ \prime &{} \\ | ||
+ | \end{array} | ||
+ | \right \} | ||
+ | = P \left \{ | ||
− | + | \begin{array}{llll} | |
+ | a _ {1} &b _ {1} &c _ {1} &{} \\ | ||
+ | \alpha &\beta &\gamma &z _ {1} \\ | ||
+ | \alpha ^ \prime &\beta ^ \prime &\gamma ^ \prime &{} \\ | ||
+ | \end{array} | ||
+ | \right \} . | ||
+ | $$ | ||
2) The transformation | 2) The transformation | ||
− | + | $$ | |
+ | \left ( z- | ||
+ | \frac{a}{z- | ||
+ | b} \right ) ^ {k} | ||
+ | \left ( z- | ||
+ | \frac{c}{z- | ||
+ | b }\right ) ^ {l} w = \widetilde{w} | ||
+ | $$ | ||
transforms a Papperitz equation into a Papperitz equation with the same singular points, but with different characteristic exponents: | transforms a Papperitz equation into a Papperitz equation with the same singular points, but with different characteristic exponents: | ||
− | + | $$ | |
+ | \left ( z- | ||
+ | \frac{a}{z- | ||
+ | b }\right ) ^ {k} | ||
+ | \left ( z- | ||
+ | \frac{c}{z- | ||
+ | b} \right ) ^ {l} P \left \{ | ||
+ | |||
+ | \begin{array}{llll} | ||
+ | a & b & c &{} \\ | ||
+ | \alpha &\beta &\gamma & z \\ | ||
+ | \alpha ^ \prime &\beta ^ \prime &\gamma ^ \prime &{} \\ | ||
+ | \end{array} | ||
+ | \right \} = | ||
+ | $$ | ||
− | + | $$ | |
+ | = \ | ||
+ | P \left \{ | ||
+ | \begin{array}{cccl} | ||
+ | a & b & c &{} \\ | ||
+ | \alpha + k &\beta - k- l &\gamma + l & z \\ | ||
+ | \alpha | ||
+ | ^ \prime + k &\beta ^ \prime - k- l &\gamma ^ \prime + l &{} \\ | ||
+ | \end{array} | ||
+ | \right \} . | ||
+ | $$ | ||
3) The [[Hypergeometric equation|hypergeometric equation]] | 3) The [[Hypergeometric equation|hypergeometric equation]] | ||
− | + | $$ | |
+ | z( 1- z) w ^ {\prime\prime} + [ C - ( A+ B+ 1) z] w ^ \prime - ABw = 0 | ||
+ | $$ | ||
is a special case of a Papperitz equation and it corresponds in Riemann's notation to | is a special case of a Papperitz equation and it corresponds in Riemann's notation to | ||
− | + | $$ | |
+ | P \left \{ | ||
+ | |||
+ | \begin{array}{clcl} | ||
+ | 0 &\infty & 1 &{} \\ | ||
+ | 0 & A & 0 & z \\ | ||
+ | 1- C & B &C- A- B &{} \\ | ||
+ | \end{array} | ||
+ | \right \} . | ||
+ | $$ | ||
4) Each solution of a Papperitz equation can be expressed in terms of the hypergeometric function, | 4) Each solution of a Papperitz equation can be expressed in terms of the hypergeometric function, | ||
− | + | $$ \tag{2 } | |
+ | w( z) = \left ( z- | ||
+ | \frac{a}{z- | ||
+ | b }\right ) ^ \alpha \left ( z- | ||
+ | \frac{c}{z- | ||
+ | b }\right ) ^ \gamma \times | ||
+ | $$ | ||
− | + | $$ | |
+ | \times | ||
+ | F \left \{ \alpha + \beta + \gamma ; \alpha + \beta | ||
+ | ^ \prime + \gamma ; 1 + \alpha - | ||
+ | \alpha ^ \prime ; | ||
+ | \frac{( z- a)( c- b) }{( z- b)( c- a) } | ||
+ | \right \} | ||
+ | $$ | ||
− | under the assumption that | + | under the assumption that $ \alpha - \alpha ^ \prime $ |
+ | is not a negative integer. If none of the differences $ \alpha - \alpha ^ \prime $, | ||
+ | $ \beta - \beta ^ \prime $, | ||
+ | $ \gamma - \gamma ^ \prime $ | ||
+ | are integers, then interchanging in (2) the positions of $ \alpha $ | ||
+ | and $ \alpha ^ \prime $ | ||
+ | or of $ \gamma $ | ||
+ | and $ \gamma ^ \prime $, | ||
+ | four solutions of a Papperitz equation are obtained. In addition a Papperitz equation remains unchanged if the positions of the triples $ ( \alpha , \alpha ^ \prime , a) $, | ||
+ | $ ( \beta , \beta ^ \prime , b) $, | ||
+ | $ ( \gamma , \gamma ^ \prime , c) $ | ||
+ | are rearranged; all these rearrangements provide 24 special solutions of a Papperitz equation (1), which were first obtained by E.E. Kummer [[#References|[5]]]. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> B. Riemann, "Beiträge zur Theorie der durch Gauss'sche Reihe <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071130/p07113056.png" /> darstellbare Functionen" , ''Gesammelte math. Werke'' , Dover, reprint (1953) pp. 67–85</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> E. Papperitz, "Ueber verwandte <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071130/p07113057.png" />-Functionen" ''Math. Ann.'' , '''25''' (1885) pp. 212–221 {{MR|1510304}} {{ZBL|}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> E.T. Whittaker, G.N. Watson, "A course of modern analysis" , Cambridge Univ. Press (1952) pp. Chapt. 6 {{MR|1424469}} {{MR|0595076}} {{MR|0178117}} {{MR|1519757}} {{ZBL|0951.30002}} {{ZBL|0108.26903}} {{ZBL|0105.26901}} {{ZBL|53.0180.04}} {{ZBL|47.0190.17}} {{ZBL|45.0433.02}} {{ZBL|33.0390.01}} </TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> V.V. Golubev, "Vorlesungen über Differentialgleichungen im Komplexen" , Deutsch. Verlag Wissenschaft. (1958) (Translated from Russian) {{MR|0100119}} {{ZBL|}} </TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> E.E. Kummer, "Ueber die hypergeometrische Reihe <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071130/p07113058.png" />" ''J. Reine Angew. Math.'' , '''15''' (1836) pp. 39–83; 127–172</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> B. Riemann, "Beiträge zur Theorie der durch Gauss'sche Reihe <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071130/p07113056.png" /> darstellbare Functionen" , ''Gesammelte math. Werke'' , Dover, reprint (1953) pp. 67–85</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> E. Papperitz, "Ueber verwandte <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071130/p07113057.png" />-Functionen" ''Math. Ann.'' , '''25''' (1885) pp. 212–221 {{MR|1510304}} {{ZBL|}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> E.T. Whittaker, G.N. Watson, "A course of modern analysis" , Cambridge Univ. Press (1952) pp. Chapt. 6 {{MR|1424469}} {{MR|0595076}} {{MR|0178117}} {{MR|1519757}} {{ZBL|0951.30002}} {{ZBL|0108.26903}} {{ZBL|0105.26901}} {{ZBL|53.0180.04}} {{ZBL|47.0190.17}} {{ZBL|45.0433.02}} {{ZBL|33.0390.01}} </TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> V.V. Golubev, "Vorlesungen über Differentialgleichungen im Komplexen" , Deutsch. Verlag Wissenschaft. (1958) (Translated from Russian) {{MR|0100119}} {{ZBL|}} </TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> E.E. Kummer, "Ueber die hypergeometrische Reihe <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071130/p07113058.png" />" ''J. Reine Angew. Math.'' , '''15''' (1836) pp. 39–83; 127–172</TD></TR></table> |
Latest revision as of 08:38, 14 July 2022
An ordinary second-order Fuchsian linear differential equation having precisely three singular points:
$$ \tag{1 } w ^ {\prime\prime } + \left ( \frac{1 - \alpha - \alpha ^ \prime }{z- a} + \frac{1 - \beta - \beta ^ \prime }{z- b} + \frac{1- \gamma - \gamma ^ \prime }{z- c} \right ) w ^ \prime + $$
$$ + \left [ \frac{\alpha \alpha ^ \prime ( a- b)( a- c) }{z- a} + \frac{\beta \beta ^ \prime ( b- c)( b- a) }{z- b}\right . + $$
$$ + \left . \frac{\gamma \gamma ^ \prime ( c- a)( c- b) }{z- c} \right ] \frac{w}{(z- a)( z- b)( z- c)} = 0 , $$
$$ \alpha + \alpha ^ \prime + \beta + \beta ^ \prime + \gamma + \gamma ^ \prime = 1; $$
here $ a, b, c $ are pairwise distinct complex numbers, $ \alpha , \alpha ^ \prime $( $ \beta , \beta ^ \prime $ and $ \gamma , \gamma ^ \prime $) are the characteristic exponents at the singular point $ z= a $( respectively, $ z= b $ and $ z= c $). A Papperitz equation is uniquely determined by the assignment of the singular points and the characteristic exponents. In solving a Papperitz equation (1), use is made of Riemann's notation:
$$ w = P \left \{ \begin{array}{llll} a & b & c &{} \\ \alpha &\beta &\gamma & z \\ \alpha ^ \prime &\beta ^ \prime &\gamma ^ \prime &{} \\ \end{array} \right \} . $$
B. Riemann investigated [1] the problem of finding all many-valued functions $ w( z) $, analytic in the extended complex plane, which have the following properties:
a) the function $ w( z) $ has precisely three singular points $ a, b, c $;
b) any three of its branches are connected by a linear equation
$$ A _ {1} w _ {1} ( z) + A _ {2} w _ {2} ( z) + A _ {3} w _ {3} ( z) = 0 $$
with constant coefficients;
c) the function $ w( z) $ has the simplest singularities at the points $ a, b, c $; namely, in a neighbourhood of the point $ z= a $ there are two branches $ \widetilde{w} _ {1} ( z) $ and $ \widetilde{w} _ {2} ( z) $ satisfying
$$ \widetilde{w} _ {1} ( z) = \ ( z- a) ^ \alpha \phi _ {1} ( z) ,\ \ \widetilde{w} _ {2} ( z) = \ ( z- a) ^ {\alpha ^ \prime } \phi _ {2} ( z) , $$
where $ \phi _ {j} ( z) $ $ ( j = 1, 2) $ is holomorphic at $ z= a $; and analogously for $ b $ and $ c $.
Riemann, under certain additional assumptions on the numbers $ \alpha , \alpha ^ \prime \dots \gamma ^ \prime $, showed that all such functions can be expressed in terms of hypergeometric functions and that $ w( z) $ satisfies a linear second-order differential equation with rational coefficients, but did not write this equation out explicitly (see [1]). The equation in question, (1), was given by E. Papperitz [2]. It is also called the Riemann $ P $- equation, the Riemann equation in Papperitz's form and the Riemann equation, and its solutions are called $ P $- functions.
The basic properties of the solutions of a Papperitz equation are as follows.
1) A Papperitz equation is invariant under rational-linear transformations: If $ z _ {1} = ( Az + b)/( Cz + D) $ maps the points $ a, b, c $ to points $ a _ {1} , b _ {1} , c _ {1} $, then
$$ P \left \{ \begin{array}{llll} a & b & c &{} \\ \alpha &\beta &\gamma & z \\ \alpha ^ \prime &\beta ^ \prime &\gamma ^ \prime &{} \\ \end{array} \right \} = P \left \{ \begin{array}{llll} a _ {1} &b _ {1} &c _ {1} &{} \\ \alpha &\beta &\gamma &z _ {1} \\ \alpha ^ \prime &\beta ^ \prime &\gamma ^ \prime &{} \\ \end{array} \right \} . $$
2) The transformation
$$ \left ( z- \frac{a}{z- b} \right ) ^ {k} \left ( z- \frac{c}{z- b }\right ) ^ {l} w = \widetilde{w} $$
transforms a Papperitz equation into a Papperitz equation with the same singular points, but with different characteristic exponents:
$$ \left ( z- \frac{a}{z- b }\right ) ^ {k} \left ( z- \frac{c}{z- b} \right ) ^ {l} P \left \{ \begin{array}{llll} a & b & c &{} \\ \alpha &\beta &\gamma & z \\ \alpha ^ \prime &\beta ^ \prime &\gamma ^ \prime &{} \\ \end{array} \right \} = $$
$$ = \ P \left \{ \begin{array}{cccl} a & b & c &{} \\ \alpha + k &\beta - k- l &\gamma + l & z \\ \alpha ^ \prime + k &\beta ^ \prime - k- l &\gamma ^ \prime + l &{} \\ \end{array} \right \} . $$
3) The hypergeometric equation
$$ z( 1- z) w ^ {\prime\prime} + [ C - ( A+ B+ 1) z] w ^ \prime - ABw = 0 $$
is a special case of a Papperitz equation and it corresponds in Riemann's notation to
$$ P \left \{ \begin{array}{clcl} 0 &\infty & 1 &{} \\ 0 & A & 0 & z \\ 1- C & B &C- A- B &{} \\ \end{array} \right \} . $$
4) Each solution of a Papperitz equation can be expressed in terms of the hypergeometric function,
$$ \tag{2 } w( z) = \left ( z- \frac{a}{z- b }\right ) ^ \alpha \left ( z- \frac{c}{z- b }\right ) ^ \gamma \times $$
$$ \times F \left \{ \alpha + \beta + \gamma ; \alpha + \beta ^ \prime + \gamma ; 1 + \alpha - \alpha ^ \prime ; \frac{( z- a)( c- b) }{( z- b)( c- a) } \right \} $$
under the assumption that $ \alpha - \alpha ^ \prime $ is not a negative integer. If none of the differences $ \alpha - \alpha ^ \prime $, $ \beta - \beta ^ \prime $, $ \gamma - \gamma ^ \prime $ are integers, then interchanging in (2) the positions of $ \alpha $ and $ \alpha ^ \prime $ or of $ \gamma $ and $ \gamma ^ \prime $, four solutions of a Papperitz equation are obtained. In addition a Papperitz equation remains unchanged if the positions of the triples $ ( \alpha , \alpha ^ \prime , a) $, $ ( \beta , \beta ^ \prime , b) $, $ ( \gamma , \gamma ^ \prime , c) $ are rearranged; all these rearrangements provide 24 special solutions of a Papperitz equation (1), which were first obtained by E.E. Kummer [5].
References
[1] | B. Riemann, "Beiträge zur Theorie der durch Gauss'sche Reihe darstellbare Functionen" , Gesammelte math. Werke , Dover, reprint (1953) pp. 67–85 |
[2] | E. Papperitz, "Ueber verwandte -Functionen" Math. Ann. , 25 (1885) pp. 212–221 MR1510304 |
[3] | E.T. Whittaker, G.N. Watson, "A course of modern analysis" , Cambridge Univ. Press (1952) pp. Chapt. 6 MR1424469 MR0595076 MR0178117 MR1519757 Zbl 0951.30002 Zbl 0108.26903 Zbl 0105.26901 Zbl 53.0180.04 Zbl 47.0190.17 Zbl 45.0433.02 Zbl 33.0390.01 |
[4] | V.V. Golubev, "Vorlesungen über Differentialgleichungen im Komplexen" , Deutsch. Verlag Wissenschaft. (1958) (Translated from Russian) MR0100119 |
[5] | E.E. Kummer, "Ueber die hypergeometrische Reihe " J. Reine Angew. Math. , 15 (1836) pp. 39–83; 127–172 |
Papperitz equation. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Papperitz_equation&oldid=24524