Difference between revisions of "Irregularity indices"
(Importing text file) |
m (fixing subscripts) |
||
| (One intermediate revision by one other user not shown) | |||
| Line 1: | Line 1: | ||
| + | <!-- | ||
| + | i0527001.png | ||
| + | $#A+1 = 21 n = 0 | ||
| + | $#C+1 = 21 : ~/encyclopedia/old_files/data/I052/I.0502700 Irregularity indices | ||
| + | Automatically converted into TeX, above some diagnostics. | ||
| + | Please remove this comment and the {{TEX|auto}} line below, | ||
| + | if TeX found to be correct. | ||
| + | --> | ||
| + | |||
| + | {{TEX|auto}} | ||
| + | {{TEX|done}} | ||
| + | |||
''for linear systems of ordinary differential equations'' | ''for linear systems of ordinary differential equations'' | ||
| − | Non-negative functions | + | Non-negative functions $ \sigma $ |
| + | on the space of mappings $ A : \mathbf R ^ {+} \rightarrow \mathop{\rm Hom} ( \mathbf R ^ {n} , \mathbf R ^ {n} ) $ (or $ \mathbf R ^ {+} \rightarrow \mathop{\rm Hom} ( \mathbf C ^ {n} , \mathbf C ^ {n} ) $), | ||
| + | integrable on every finite interval, such that $ \sigma ( A ) $ | ||
| + | equals zero if and only if the system | ||
| − | + | $$ \tag{* } | |
| + | \dot{x} = A ( t) x | ||
| + | $$ | ||
is a [[Regular linear system|regular linear system]]. | is a [[Regular linear system|regular linear system]]. | ||
| Line 11: | Line 28: | ||
1) The Lyapunov irregularity index [[#References|[1]]]: | 1) The Lyapunov irregularity index [[#References|[1]]]: | ||
| − | + | $$ | |
| + | \sigma _ {L} ( A ) = \ | ||
| + | \sum _ { i= 1} ^ { n } | ||
| + | \lambda _ {i} ( A ) - | ||
| + | \lim\limits _ {\overline{ {t \rightarrow + \infty }}\; } \ | ||
| + | |||
| + | \frac{1}{t} | ||
| + | |||
| + | \int\limits _ { 0 } ^ { t } | ||
| + | \mathop{\rm tr} A ( \tau ) d \tau , | ||
| + | $$ | ||
| − | where | + | where $ \lambda _ {i} ( A) $ |
| + | are the Lyapunov characteristic exponents (cf. [[Lyapunov characteristic exponent|Lyapunov characteristic exponent]]) of the system (*), arranged in descending order, while $ \mathop{\rm tr} A ( t) $ | ||
| + | is the trace of the mapping $ A ( t) $. | ||
2) The Perron irregularity index [[#References|[2]]]: | 2) The Perron irregularity index [[#References|[2]]]: | ||
| − | + | $$ | |
| + | \sigma _ {p} ( A) = \ | ||
| + | \max _ {1 \leq i \leq n } | ||
| + | ( \lambda _ {i} ( A) + \lambda _ {n+ 1- i} ( - A ^ {*} ) ) , | ||
| + | $$ | ||
| − | where | + | where $ A ^ {*} ( t) $ |
| + | is the adjoint of the mapping $ A ( t) $. | ||
| + | If the system (*) is a system of [[Variational equations|variational equations]] of a [[Hamiltonian system|Hamiltonian system]] | ||
| − | + | $$ | |
| + | \dot{q} = | ||
| + | \frac{\partial H }{\partial p } | ||
| + | ,\ p \in \mathbf R ^ {k} , | ||
| + | $$ | ||
| − | + | $$ | |
| + | \dot{p} = - | ||
| + | \frac{\partial H }{\partial q } | ||
| + | ,\ q \in \mathbf R ^ {k} , | ||
| + | $$ | ||
| − | then | + | then $ n = 2k $ |
| + | and | ||
| − | + | $$ | |
| + | \lambda _ {i} ( - A ^ {*} ) = \ | ||
| + | \lambda _ {i} ( A ) ,\ \ | ||
| + | i = 1 \dots n . | ||
| + | $$ | ||
Consequently, for a system of variational equations of a Hamiltonian system, | Consequently, for a system of variational equations of a Hamiltonian system, | ||
| − | + | $$ | |
| + | \lambda _ {i} ( A ) = \ | ||
| + | - \lambda _ {n+ 1}- i ( A) ,\ \ | ||
| + | i = 1, \dots, k , | ||
| + | $$ | ||
is a necessary and sufficient condition for regularity (a theorem of Persidskii). | is a necessary and sufficient condition for regularity (a theorem of Persidskii). | ||
| Line 39: | Line 91: | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> A.M. Lyapunov, "Collected works" , '''2''' , Moscow-Leningrad (1956) (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> O. Perron, "Die Ordnungszahlen linearer Differentialgleichungssysteme" ''Math. Z.'' , '''31''' (1929–1930) pp. 748–766</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> I.G. Malkin, "Theorie der Stabilität einer Bewegung" , R. Oldenbourg , München (1959) pp. Sect. 79 (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> B.V. Nemytskii, "The theory of Lyapunov exponents and its applications to problems of stability" , Moscow (1966) (In Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> N.A. Izobov, "Linear systems of ordinary differential equations" ''J. Soviet Math.'' , '''5''' : 1 (1976) pp. 46–96 ''Itogi Nauk. i Tekhn. Mat. Anal.'' , '''12''' (1974) pp. 71–146</TD></TR><TR><TD valign="top">[6a]</TD> <TD valign="top"> R.A. Prokhorova, "Estimate of the jump of the highest exponent of a linear system due to exponential perturbations" ''Differential Eq.'' , '''12''' : 3 (1977) pp. 333–338 ''Differentsial'nye Uravneniya'' , '''12''' : 3 (1976) pp. 475–483</TD></TR><TR><TD valign="top">[6b]</TD> <TD valign="top"> R.A. Prokhorova, "Stability with respect to a first approximation" ''Differential Eq.'' , '''12''' : 4 (1977) pp. 539–542 ''Differentsial'nye Uravneniya'' , '''12''' : 4 (1976) pp. 766–796</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> A.M. Lyapunov, "Collected works" , '''2''' , Moscow-Leningrad (1956) (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> O. Perron, "Die Ordnungszahlen linearer Differentialgleichungssysteme" ''Math. Z.'' , '''31''' (1929–1930) pp. 748–766</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> I.G. Malkin, "Theorie der Stabilität einer Bewegung" , R. Oldenbourg , München (1959) pp. Sect. 79 (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> B.V. Nemytskii, "The theory of Lyapunov exponents and its applications to problems of stability" , Moscow (1966) (In Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> N.A. Izobov, "Linear systems of ordinary differential equations" ''J. Soviet Math.'' , '''5''' : 1 (1976) pp. 46–96 ''Itogi Nauk. i Tekhn. Mat. Anal.'' , '''12''' (1974) pp. 71–146</TD></TR><TR><TD valign="top">[6a]</TD> <TD valign="top"> R.A. Prokhorova, "Estimate of the jump of the highest exponent of a linear system due to exponential perturbations" ''Differential Eq.'' , '''12''' : 3 (1977) pp. 333–338 ''Differentsial'nye Uravneniya'' , '''12''' : 3 (1976) pp. 475–483</TD></TR><TR><TD valign="top">[6b]</TD> <TD valign="top"> R.A. Prokhorova, "Stability with respect to a first approximation" ''Differential Eq.'' , '''12''' : 4 (1977) pp. 539–542 ''Differentsial'nye Uravneniya'' , '''12''' : 4 (1976) pp. 766–796</TD></TR></table> | ||
| − | |||
| − | |||
====Comments==== | ====Comments==== | ||
| − | In the case of | + | In the case of $ A : \mathbf R ^ {+} \rightarrow \mathop{\rm Hom} ( \mathbf C ^ {n} , \mathbf C ^ {n} ) $, |
| + | read $ \sum _ {i= 1} ^ {n} \mathop{\rm Re} A _ {ii} ( t) $ | ||
| + | instead of $ \mathop{\rm tr} A ( t) $ | ||
| + | in the definition of $ \sigma _ {L} $. | ||
Latest revision as of 08:11, 13 July 2022
for linear systems of ordinary differential equations
Non-negative functions $ \sigma $ on the space of mappings $ A : \mathbf R ^ {+} \rightarrow \mathop{\rm Hom} ( \mathbf R ^ {n} , \mathbf R ^ {n} ) $ (or $ \mathbf R ^ {+} \rightarrow \mathop{\rm Hom} ( \mathbf C ^ {n} , \mathbf C ^ {n} ) $), integrable on every finite interval, such that $ \sigma ( A ) $ equals zero if and only if the system
$$ \tag{* } \dot{x} = A ( t) x $$
is a regular linear system.
The best known (and easiest to define) such regularity indices are as follows.
1) The Lyapunov irregularity index [1]:
$$ \sigma _ {L} ( A ) = \ \sum _ { i= 1} ^ { n } \lambda _ {i} ( A ) - \lim\limits _ {\overline{ {t \rightarrow + \infty }}\; } \ \frac{1}{t} \int\limits _ { 0 } ^ { t } \mathop{\rm tr} A ( \tau ) d \tau , $$
where $ \lambda _ {i} ( A) $ are the Lyapunov characteristic exponents (cf. Lyapunov characteristic exponent) of the system (*), arranged in descending order, while $ \mathop{\rm tr} A ( t) $ is the trace of the mapping $ A ( t) $.
2) The Perron irregularity index [2]:
$$ \sigma _ {p} ( A) = \ \max _ {1 \leq i \leq n } ( \lambda _ {i} ( A) + \lambda _ {n+ 1- i} ( - A ^ {*} ) ) , $$
where $ A ^ {*} ( t) $ is the adjoint of the mapping $ A ( t) $. If the system (*) is a system of variational equations of a Hamiltonian system
$$ \dot{q} = \frac{\partial H }{\partial p } ,\ p \in \mathbf R ^ {k} , $$
$$ \dot{p} = - \frac{\partial H }{\partial q } ,\ q \in \mathbf R ^ {k} , $$
then $ n = 2k $ and
$$ \lambda _ {i} ( - A ^ {*} ) = \ \lambda _ {i} ( A ) ,\ \ i = 1 \dots n . $$
Consequently, for a system of variational equations of a Hamiltonian system,
$$ \lambda _ {i} ( A ) = \ - \lambda _ {n+ 1}- i ( A) ,\ \ i = 1, \dots, k , $$
is a necessary and sufficient condition for regularity (a theorem of Persidskii).
For other irregularity indices, see [4]–.
References
| [1] | A.M. Lyapunov, "Collected works" , 2 , Moscow-Leningrad (1956) (In Russian) |
| [2] | O. Perron, "Die Ordnungszahlen linearer Differentialgleichungssysteme" Math. Z. , 31 (1929–1930) pp. 748–766 |
| [3] | I.G. Malkin, "Theorie der Stabilität einer Bewegung" , R. Oldenbourg , München (1959) pp. Sect. 79 (Translated from Russian) |
| [4] | B.V. Nemytskii, "The theory of Lyapunov exponents and its applications to problems of stability" , Moscow (1966) (In Russian) |
| [5] | N.A. Izobov, "Linear systems of ordinary differential equations" J. Soviet Math. , 5 : 1 (1976) pp. 46–96 Itogi Nauk. i Tekhn. Mat. Anal. , 12 (1974) pp. 71–146 |
| [6a] | R.A. Prokhorova, "Estimate of the jump of the highest exponent of a linear system due to exponential perturbations" Differential Eq. , 12 : 3 (1977) pp. 333–338 Differentsial'nye Uravneniya , 12 : 3 (1976) pp. 475–483 |
| [6b] | R.A. Prokhorova, "Stability with respect to a first approximation" Differential Eq. , 12 : 4 (1977) pp. 539–542 Differentsial'nye Uravneniya , 12 : 4 (1976) pp. 766–796 |
Comments
In the case of $ A : \mathbf R ^ {+} \rightarrow \mathop{\rm Hom} ( \mathbf C ^ {n} , \mathbf C ^ {n} ) $, read $ \sum _ {i= 1} ^ {n} \mathop{\rm Re} A _ {ii} ( t) $ instead of $ \mathop{\rm tr} A ( t) $ in the definition of $ \sigma _ {L} $.
Irregularity indices. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Irregularity_indices&oldid=14378