Difference between revisions of "Torsion submodule"
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
m (fixing spaces) |
||
Line 13: | Line 13: | ||
Let $ R $ | Let $ R $ | ||
be an associative ring with unit, and $ M $ | be an associative ring with unit, and $ M $ | ||
− | a left $ R $- | + | a left $ R $-module. The torsion subgroup $ T( M) $ |
− | module. The torsion subgroup $ T( M) $ | ||
is defined as | is defined as | ||
$$ | $$ | ||
T( M) = | T( M) = | ||
− | |||
− | |||
− | |||
− | |||
\{ {x \in M } : { | \{ {x \in M } : { | ||
− | \ | + | \operatorname{Ann} _ {R} ( x) \textrm{ contains a regular element } } |
\} . | \} . | ||
$$ | $$ | ||
Line 41: | Line 36: | ||
is a pair $ ( {\mathcal T} , {\mathcal F} ) $ | is a pair $ ( {\mathcal T} , {\mathcal F} ) $ | ||
of subclasses of the objects of $ {\mathcal C} $ | of subclasses of the objects of $ {\mathcal C} $ | ||
− | such that $ \ | + | such that $ \operatorname{Mor} _ {\mathcal C} ( T, F ) = \{ 0 \} $ |
for all $ T \in {\mathcal T} $, | for all $ T \in {\mathcal T} $, | ||
$ F \in {\mathcal F} $ | $ F \in {\mathcal F} $ | ||
and $ {\mathcal T} $ | and $ {\mathcal T} $ | ||
and $ {\mathcal F} $ | and $ {\mathcal F} $ | ||
− | are maximal with this property, i.e. if $ | + | are maximal with this property, i.e. if $ \operatorname{Mor} _ {\mathcal C} ( X, F ) = \{ 0 \} $ |
for all $ F \in {\mathcal F} $, | for all $ F \in {\mathcal F} $, | ||
then $ X \in {\mathcal T} $, | then $ X \in {\mathcal T} $, | ||
− | and if $ \ | + | and if $ \operatorname{Mor} _ {\mathcal C} ( T, Y) = \{ 0 \} $ |
for all $ T \in {\mathcal T} $, | for all $ T \in {\mathcal T} $, | ||
then $ Y \in {\mathcal F} $. | then $ Y \in {\mathcal F} $. | ||
Line 55: | Line 50: | ||
The torsion submodules and torsion-free submodules of a left Ore ring $ R $ | The torsion submodules and torsion-free submodules of a left Ore ring $ R $ | ||
from a torsion theory for the category $ R \textrm{ - Mod } $ | from a torsion theory for the category $ R \textrm{ - Mod } $ | ||
− | of left $ R $- | + | of left $ R $-modules. |
− | modules. | ||
A radical on $ R \textrm{ - Mod } $ | A radical on $ R \textrm{ - Mod } $ | ||
− | is a left-exact functor $ | + | is a left-exact functor $ \operatorname{Rad} : R \textrm{ - Mod } \rightarrow R \textrm{ - Mod } $ |
such that for all $ M, N \in R \textrm{ - Mod } $, | such that for all $ M, N \in R \textrm{ - Mod } $, | ||
− | i) $ | + | i) $ \operatorname{Rad} ( M) $ |
is a submodule of $ M $; | is a submodule of $ M $; | ||
− | ii) $ f ( | + | ii) $ f ( \operatorname{Rad} M ) \subset \operatorname{Rad} N $ |
− | for all $ f \in | + | for all $ f \in \Hom} {R} ( M, N) $; |
− | more precisely, $ | + | more precisely, $ \operatorname{Rad} ( f ) $ |
is the restriction of $ f $ | is the restriction of $ f $ | ||
− | to $ | + | to $ \operatorname{Rad} ( M) \subset M $. |
− | iii) $ | + | iii) $ \operatorname{Rad} ( M / \operatorname{Rad} ( M) ) = \{ 0 \} $. |
− | A radical $ | + | A radical $ \operatorname{Rad} $ |
− | is a torsion radical or hereditary radical if $ N \cap | + | is a torsion radical or hereditary radical if $ N \cap \operatorname{Rad} ( M) = \operatorname{Rad} ( N) $ |
for each submodule $ N $ | for each submodule $ N $ | ||
of a module $ M $. | of a module $ M $. | ||
− | A torsion radical $ | + | A torsion radical $ \operatorname{Rad} $ |
defines a torsion theory for $ R \textrm{ - Mod } $ | defines a torsion theory for $ R \textrm{ - Mod } $ | ||
− | with $ {\mathcal T} _ { \ | + | with $ {\mathcal T} _ {\operatorname{\rm Rad} } = \{ {M \in R \textrm{ - Mod } } : { \operatorname{Rad} ( M) = M } \} $, |
− | $ {\mathcal F} _ { \ | + | $ {\mathcal F} _ { \operatorname{Rad} } = \{ {M \in R \textrm{ - Mod } } : { \operatorname{Rad} ( M) = 0 } \} $. |
All torsion theories for $ R \textrm{ - Mod } $ | All torsion theories for $ R \textrm{ - Mod } $ | ||
arise this way. | arise this way. | ||
Line 86: | Line 80: | ||
A left denominator set of $ R $ | A left denominator set of $ R $ | ||
is a submonoid $ S $ | is a submonoid $ S $ | ||
− | of $ R $( | + | of $ R $ (i.e. $ 1 \in S $ |
− | i.e. $ 1 \in S $ | ||
and $ s _ {1} , s _ {2} \in S \Rightarrow s _ { 1 _ 2 } \in S $) | and $ s _ {1} , s _ {2} \in S \Rightarrow s _ { 1 _ 2 } \in S $) | ||
such that: | such that: | ||
Line 113: | Line 106: | ||
$$ | $$ | ||
− | \ | + | \operatorname{Rad} _ {S} ( M ) = \ |
− | \{ {x \in M } : { \ | + | \{ {x \in M } : { \operatorname{Ann} _ {R} ( x) \cap S \neq \emptyset } \} |
. | . | ||
$$ | $$ |
Revision as of 07:12, 12 July 2022
Let $ R $
be an associative ring with unit, and $ M $
a left $ R $-module. The torsion subgroup $ T( M) $
is defined as
$$ T( M) = \{ {x \in M } : { \operatorname{Ann} _ {R} ( x) \textrm{ contains a regular element } } \} . $$
Here a regular element $ r \in R $ is an element that is not a zero divisor (neither left nor right).
If $ R $ is left Ore (cf. below and Associative rings and algebras), then $ T( M) $ is a submodule of $ M $, called the torsion submodule. A module $ M $ is torsion free if $ T( M) = \{ 0 \} $. A module is torsion if $ T( M) = M $.
Quite generally, a torsion theory for an Abelian category $ {\mathcal C} $ is a pair $ ( {\mathcal T} , {\mathcal F} ) $ of subclasses of the objects of $ {\mathcal C} $ such that $ \operatorname{Mor} _ {\mathcal C} ( T, F ) = \{ 0 \} $ for all $ T \in {\mathcal T} $, $ F \in {\mathcal F} $ and $ {\mathcal T} $ and $ {\mathcal F} $ are maximal with this property, i.e. if $ \operatorname{Mor} _ {\mathcal C} ( X, F ) = \{ 0 \} $ for all $ F \in {\mathcal F} $, then $ X \in {\mathcal T} $, and if $ \operatorname{Mor} _ {\mathcal C} ( T, Y) = \{ 0 \} $ for all $ T \in {\mathcal T} $, then $ Y \in {\mathcal F} $.
The torsion submodules and torsion-free submodules of a left Ore ring $ R $ from a torsion theory for the category $ R \textrm{ - Mod } $ of left $ R $-modules.
A radical on $ R \textrm{ - Mod } $ is a left-exact functor $ \operatorname{Rad} : R \textrm{ - Mod } \rightarrow R \textrm{ - Mod } $ such that for all $ M, N \in R \textrm{ - Mod } $,
i) $ \operatorname{Rad} ( M) $ is a submodule of $ M $;
ii) $ f ( \operatorname{Rad} M ) \subset \operatorname{Rad} N $ for all $ f \in \Hom} {R} ( M, N) $; more precisely, $ \operatorname{Rad} ( f ) $ is the restriction of $ f $ to $ \operatorname{Rad} ( M) \subset M $.
iii) $ \operatorname{Rad} ( M / \operatorname{Rad} ( M) ) = \{ 0 \} $.
A radical $ \operatorname{Rad} $ is a torsion radical or hereditary radical if $ N \cap \operatorname{Rad} ( M) = \operatorname{Rad} ( N) $ for each submodule $ N $ of a module $ M $. A torsion radical $ \operatorname{Rad} $ defines a torsion theory for $ R \textrm{ - Mod } $ with $ {\mathcal T} _ {\operatorname{\rm Rad} } = \{ {M \in R \textrm{ - Mod } } : { \operatorname{Rad} ( M) = M } \} $, $ {\mathcal F} _ { \operatorname{Rad} } = \{ {M \in R \textrm{ - Mod } } : { \operatorname{Rad} ( M) = 0 } \} $. All torsion theories for $ R \textrm{ - Mod } $ arise this way.
A left denominator set of $ R $ is a submonoid $ S $ of $ R $ (i.e. $ 1 \in S $ and $ s _ {1} , s _ {2} \in S \Rightarrow s _ { 1 _ 2 } \in S $) such that:
a) (the left Ore condition) for all $ s _ {1} \in S $, $ r _ {1} \in R $ there are $ s _ {2} \in S $, $ r _ {2} \in R $ such that $ s _ {2} r _ {1} = r _ {2} s _ {1} $;
b) if $ r s = 0 $ for $ r \in R $, $ s \in S $, then there is an $ s ^ \prime \in S $ with $ s ^ \prime r = 0 $.
If the set of all regular elements of $ R $ is a left denominator set, then $ R $ is called left Ore. A left denominator set is also called a left Ore set.
A left denominator set $ S $ defines a torsion theory $ ( {\mathcal T} _ {s} , {\mathcal F} _ {s} ) $ for $ R \textrm{ - Mod } $ by the associated radical functor
$$ \operatorname{Rad} _ {S} ( M ) = \ \{ {x \in M } : { \operatorname{Ann} _ {R} ( x) \cap S \neq \emptyset } \} . $$
This illustrates the links between torsion theories and (non-commutative) localization (theories). For much more about this theme cf. [a1], [a2], [a3], cf. also Fractions, ring of.
References
[a1] | L.H. Rowen, "Ring theory" , 1 , Acad. Press (1988) pp. §3.4 |
[a2] | C. Faith, "Algebra: rings, modules, and categories" , 1 , Springer (1973) pp. §15, §16 |
[a3] | J.S. Golan, "Localization of noncommutative rings" , M. Dekker (1975) |
Torsion submodule. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Torsion_submodule&oldid=48999