Difference between revisions of "Parametric representation"
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
m (fixing spaces) |
||
(One intermediate revision by the same user not shown) | |||
Line 18: | Line 18: | ||
say on $ [ \alpha , \beta ] $, | say on $ [ \alpha , \beta ] $, | ||
for which $ \phi : [ \alpha , \beta ] \rightarrow [ a, b] $ | for which $ \phi : [ \alpha , \beta ] \rightarrow [ a, b] $ | ||
− | has a single-valued inverse $ \phi ^ {-} | + | has a single-valued inverse $ \phi ^ {- 1} : [ a, b] \rightarrow [ \alpha , \beta ] $ |
− | such that $ f = \psi \circ \phi ^ {-} | + | such that $ f = \psi \circ \phi ^ {- 1} $, |
that is, for any $ x \in [ a, b] $, | that is, for any $ x \in [ a, b] $, | ||
$$ | $$ | ||
− | f( x) = \psi [ \phi ^ {-} | + | f( x) = \psi [ \phi ^ {- 1} ( x)]. |
$$ | $$ | ||
Line 44: | Line 44: | ||
have at $ t _ {0} $ | have at $ t _ {0} $ | ||
derivatives of order $ n $, | derivatives of order $ n $, | ||
− | $ n = 2, 3 \dots $ | + | $ n = 2, 3, \dots $ |
then $ f $ | then $ f $ | ||
has a derivative of order $ n $ | has a derivative of order $ n $ | ||
Line 51: | Line 51: | ||
and $ \psi $ | and $ \psi $ | ||
of orders $ k $, | of orders $ k $, | ||
− | $ k = 1 \dots n $, | + | $ k = 1, \dots, n $, |
− | where in the denominator there stands the $ ( 2n- 1) $- | + | where in the denominator there stands the $ ( 2n- 1) $-th power of $ \phi ^ \prime ( t _ {0} ) $; |
− | th power of $ \phi ^ \prime ( t _ {0} ) $; | ||
for example, | for example, | ||
Latest revision as of 07:22, 16 June 2022
of a function
The specification of a function $ f $, say defined on $ [ a, b] $, by means of a pair of functions $ \phi , \psi $, say on $ [ \alpha , \beta ] $, for which $ \phi : [ \alpha , \beta ] \rightarrow [ a, b] $ has a single-valued inverse $ \phi ^ {- 1} : [ a, b] \rightarrow [ \alpha , \beta ] $ such that $ f = \psi \circ \phi ^ {- 1} $, that is, for any $ x \in [ a, b] $,
$$ f( x) = \psi [ \phi ^ {- 1} ( x)]. $$
Example. The pair of functions $ x = \cos t $, $ y = \sin t $, $ 0 \leq t \leq \pi $, is a parametric representation of the function $ y = \sqrt {1- x ^ {2} } $, $ - 1 \leq x \leq 1 $.
If at a point $ t _ {0} \in [ \alpha , \beta ] $ a parametric representation of $ f $ is differentiable, that is, $ \phi $ and $ \psi $ are differentiable, and if $ \phi ^ \prime ( t _ {0} ) \neq 0 $, then $ f $ is differentiable at $ x _ {0} = \phi ( t _ {0} ) $ and $ f ^ { \prime } ( x _ {0} ) = \psi ^ \prime ( t _ {0} )/ \phi ^ \prime ( t _ {0} ) $. Furthermore, if $ \phi $ and $ \psi $ have at $ t _ {0} $ derivatives of order $ n $, $ n = 2, 3, \dots $ then $ f $ has a derivative of order $ n $ at $ x _ {0} $, which is a fractional-rational function of the derivatives of $ \phi $ and $ \psi $ of orders $ k $, $ k = 1, \dots, n $, where in the denominator there stands the $ ( 2n- 1) $-th power of $ \phi ^ \prime ( t _ {0} ) $; for example,
$$ f ^ { \prime\prime } ( x _ {0} ) = \frac{\psi ^ {\prime\prime} ( t _ {0} ) \phi ^ \prime ( t _ {0} ) - \psi ^ \prime ( t _ {0} ) \phi ^ {\prime\prime} ( t _ {0} ) }{[ \phi ^ \prime ( t _ {0} )] ^ {3} } . $$
Comments
The functions need not be real, the same as above holds for complex functions (i.e. $ f: D \rightarrow \mathbf C $, $ D \subset \mathbf C $).
References
[a1] | T.M. Apostol, "Calculus" , 1–2 , Blaisdell (1967) |
Parametric representation. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Parametric_representation&oldid=48125