Difference between revisions of "Multiplicity of a module"
(Importing text file) |
m (fixing length) |
||
(4 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | m0654901.png | ||
+ | $#A+1 = 49 n = 0 | ||
+ | $#C+1 = 49 : ~/encyclopedia/old_files/data/M065/M.0605490 Multiplicity of a module | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
''with respect to an ideal'' | ''with respect to an ideal'' | ||
− | Let | + | Let $ A $ |
+ | be a commutative ring with unit. A module $ M $ | ||
+ | over $ A $ | ||
+ | is said to be of finite length $ n $ | ||
+ | if there is a sequence of submodules (a Jordan–Hölder sequence) $ M _ {0} \subset \cdots \subset M _ {n} $ | ||
+ | such that each of the quotients $ M _ {i} / M _ {i+ 1} $, | ||
+ | $ i = 0, \dots, n - 1 $, | ||
+ | is a simple $ A $-module. (The number $ n $ | ||
+ | does not depend on the sequence chosen, by the [[Jordan–Hölder theorem|Jordan–Hölder theorem]].) Now let $ M $ | ||
+ | be an $ A $-module of finite type and $ \mathfrak a $ | ||
+ | an ideal contained in the radical of $ A $ | ||
+ | and such that $ M / \mathfrak a M $ | ||
+ | is of finite length, and let $ M \neq 0 $ | ||
+ | be of Krull dimension $ d $. | ||
+ | (The Krull dimension of a module $ M $ | ||
+ | is equal to the dimension of the ring $ A / \mathfrak q ( M) $ | ||
+ | where $ \mathfrak q ( M) $ | ||
+ | is the annihilator of $ M $, | ||
+ | i.e. $ \mathfrak q ( M) = \{ {a \in A } : {a M = 0 } \} $.) | ||
+ | Then there exists a unique integer $ e _ {A} ( \mathfrak a ; M ) $ | ||
+ | such that | ||
− | + | $$ | |
+ | \textrm{length} _ {A} ( M / \mathfrak a ^ {n+ 1} M ) = \ | ||
+ | e _ {A} ( \mathfrak a ; M ) | ||
+ | \frac{n ^ {d} }{d!} | ||
+ | + \textrm{(lower degree terms)} | ||
+ | $$ | ||
− | for | + | for $ n $ |
+ | large enough. The number $ e _ {A} ( \mathfrak a ; M ) $ | ||
+ | is called the multiplicity of $ M $ | ||
+ | with respect to $ \mathfrak a $. | ||
+ | The multiplicity of an ideal $ \mathfrak a $ | ||
+ | is $ e ( \mathfrak a ) = e _ {A} ( \mathfrak a ; A ) $. | ||
+ | Thus, the multiplicity of the maximal ideal $ \mathfrak m $ | ||
+ | of a local ring $ A $ | ||
+ | of dimension $ d $ | ||
+ | is equal to $ ( d - 1 ) ! $ | ||
+ | times the leading coefficient of the Hilbert–Samuel polynomial of $ A $, | ||
+ | cf. [[Local ring|Local ring]]. | ||
− | There are some mild terminological discrepancies in the literature with respect to the Hilbert–Samuel polynomial. Let | + | There are some mild terminological discrepancies in the literature with respect to the Hilbert–Samuel polynomial. Let $ \psi ( n) = \textrm{length} _ {A} ( M / \mathfrak a ^ {n+ 1} M ) $ |
+ | and $ \chi ( n) = \textrm{length} _ {A} ( \mathfrak a ^ {n} M / \mathfrak a ^ {n+ 1} M ) $. | ||
+ | Then both $ \psi ( n) $ | ||
+ | and $ \chi ( n) $ | ||
+ | are sometimes called Hilbert–Samuel functions. For both $ \psi ( n) $ | ||
+ | and $ \chi ( n) $ | ||
+ | there are polynomials in $ n $ (of degree $ d $ | ||
+ | and $ d - 1 $, | ||
+ | respectively) such that $ \psi ( n) $ | ||
+ | and $ \chi ( n) $ | ||
+ | coincide with these polynomials for large $ n $. | ||
+ | Both these polynomials occur in the literature under the name Hilbert–Samuel polynomial. | ||
For a more general set-up cf. [[#References|[a1]]]. | For a more general set-up cf. [[#References|[a1]]]. | ||
− | The multiplicity of a local ring | + | The multiplicity of a local ring $ A $ |
+ | is the multiplicity of its maximal ideal $ \mathfrak m $, | ||
+ | $ e _ {A} ( \mathfrak m ; A ) $. | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> | + | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> N. Bourbaki, "Algèbre commutative" , Masson (1983) pp. Chapt. 8, §4: Dimension {{MR|2333539}} {{MR|2284892}} {{MR|0260715}} {{MR|0194450}} {{MR|0217051}} {{MR|0171800}} {{ZBL|0579.13001}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> M. Nagata, "Local rings" , Interscience (1962) pp. Chapt. III, §23 {{MR|0155856}} {{ZBL|0123.03402}} </TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> D. Mumford, "Algebraic geometry" , '''1. Complex projective varieties''' , Springer (1976) pp. Appendix to Chapt. 6 {{MR|0453732}} {{ZBL|0356.14002}} </TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> O. Zariski, P. Samuel, "Commutative algebra" , '''2''' , v. Nostrand (1960) pp. Chapt. VIII, §10 {{MR|0120249}} {{ZBL|0121.27801}} </TD></TR></table> |
Latest revision as of 06:47, 16 June 2022
with respect to an ideal
Let $ A $ be a commutative ring with unit. A module $ M $ over $ A $ is said to be of finite length $ n $ if there is a sequence of submodules (a Jordan–Hölder sequence) $ M _ {0} \subset \cdots \subset M _ {n} $ such that each of the quotients $ M _ {i} / M _ {i+ 1} $, $ i = 0, \dots, n - 1 $, is a simple $ A $-module. (The number $ n $ does not depend on the sequence chosen, by the Jordan–Hölder theorem.) Now let $ M $ be an $ A $-module of finite type and $ \mathfrak a $ an ideal contained in the radical of $ A $ and such that $ M / \mathfrak a M $ is of finite length, and let $ M \neq 0 $ be of Krull dimension $ d $. (The Krull dimension of a module $ M $ is equal to the dimension of the ring $ A / \mathfrak q ( M) $ where $ \mathfrak q ( M) $ is the annihilator of $ M $, i.e. $ \mathfrak q ( M) = \{ {a \in A } : {a M = 0 } \} $.) Then there exists a unique integer $ e _ {A} ( \mathfrak a ; M ) $ such that
$$ \textrm{length} _ {A} ( M / \mathfrak a ^ {n+ 1} M ) = \ e _ {A} ( \mathfrak a ; M ) \frac{n ^ {d} }{d!} + \textrm{(lower degree terms)} $$
for $ n $ large enough. The number $ e _ {A} ( \mathfrak a ; M ) $ is called the multiplicity of $ M $ with respect to $ \mathfrak a $. The multiplicity of an ideal $ \mathfrak a $ is $ e ( \mathfrak a ) = e _ {A} ( \mathfrak a ; A ) $. Thus, the multiplicity of the maximal ideal $ \mathfrak m $ of a local ring $ A $ of dimension $ d $ is equal to $ ( d - 1 ) ! $ times the leading coefficient of the Hilbert–Samuel polynomial of $ A $, cf. Local ring.
There are some mild terminological discrepancies in the literature with respect to the Hilbert–Samuel polynomial. Let $ \psi ( n) = \textrm{length} _ {A} ( M / \mathfrak a ^ {n+ 1} M ) $ and $ \chi ( n) = \textrm{length} _ {A} ( \mathfrak a ^ {n} M / \mathfrak a ^ {n+ 1} M ) $. Then both $ \psi ( n) $ and $ \chi ( n) $ are sometimes called Hilbert–Samuel functions. For both $ \psi ( n) $ and $ \chi ( n) $ there are polynomials in $ n $ (of degree $ d $ and $ d - 1 $, respectively) such that $ \psi ( n) $ and $ \chi ( n) $ coincide with these polynomials for large $ n $. Both these polynomials occur in the literature under the name Hilbert–Samuel polynomial.
For a more general set-up cf. [a1].
The multiplicity of a local ring $ A $ is the multiplicity of its maximal ideal $ \mathfrak m $, $ e _ {A} ( \mathfrak m ; A ) $.
References
[a1] | N. Bourbaki, "Algèbre commutative" , Masson (1983) pp. Chapt. 8, §4: Dimension MR2333539 MR2284892 MR0260715 MR0194450 MR0217051 MR0171800 Zbl 0579.13001 |
[a2] | M. Nagata, "Local rings" , Interscience (1962) pp. Chapt. III, §23 MR0155856 Zbl 0123.03402 |
[a3] | D. Mumford, "Algebraic geometry" , 1. Complex projective varieties , Springer (1976) pp. Appendix to Chapt. 6 MR0453732 Zbl 0356.14002 |
[a4] | O. Zariski, P. Samuel, "Commutative algebra" , 2 , v. Nostrand (1960) pp. Chapt. VIII, §10 MR0120249 Zbl 0121.27801 |
Multiplicity of a module. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Multiplicity_of_a_module&oldid=16483