Difference between revisions of "Vinogradov estimates"
(Importing text file) |
m (fixing superscript) |
||
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | v0966501.png | ||
+ | $#A+1 = 35 n = 0 | ||
+ | $#C+1 = 35 : ~/encyclopedia/old_files/data/V096/V.0906650 Vinogradov estimates | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
The name of a number of theorems of I.M. Vinogradov. The following ones are the best known. | The name of a number of theorems of I.M. Vinogradov. The following ones are the best known. | ||
− | 1) Vinogradov's estimate for character sums (cf. [[Dirichlet character|Dirichlet character]]). If | + | 1) Vinogradov's estimate for character sums (cf. [[Dirichlet character|Dirichlet character]]). If $ \chi $ |
+ | is a non-principal character mod $ D $, | ||
+ | then if $ N > 0 $, | ||
+ | $ M \geq 1 $, | ||
− | + | $$ | |
+ | \left | \sum _ {n = N + 1 } ^ { {n } + M } | ||
+ | \chi ( n) \right | \leq \sqrt D \mathop{\rm log} D. | ||
+ | $$ | ||
− | 2) Vinogradov's estimate for Weyl sums (cf. [[Weyl sum|Weyl sum]]). Let | + | 2) Vinogradov's estimate for Weyl sums (cf. [[Weyl sum|Weyl sum]]). Let $ n \geq 12 $ |
+ | be a constant and let $ \nu = 1/n $. | ||
+ | Furthermore, let the points of $ n $-dimensional space be subdivided into two classes — class 1 and class 2. A point in class 1 is a point | ||
− | + | $$ | |
+ | \left ( | ||
+ | \frac{a _ {n} }{q _ {n} } | ||
+ | + | ||
+ | z _ {n} \dots | ||
+ | \frac{a _ {1} }{q _ {1} } | ||
+ | + z _ {1} \right ) | ||
+ | $$ | ||
− | where the first terms are rational irreducible fractions with positive denumerators, with lowest common multiple | + | where the first terms are rational irreducible fractions with positive denumerators, with lowest common multiple $ Q $ |
+ | which is not larger than $ p ^ \nu $, | ||
+ | while the second term satisfies the condition | ||
− | + | $$ | |
+ | | z _ {s} | \leq p ^ {- s + \nu } . | ||
+ | $$ | ||
A point in class 2 is a point not belonging to class 1. Then, putting | A point in class 2 is a point not belonging to class 1. Then, putting | ||
− | + | $$ | |
+ | \rho = \ | ||
+ | { | ||
+ | \frac{1}{8 n ^ {2} ( \mathop{\rm log} n + 0.5 \mathop{\rm log} \mathop{\rm log} n + 1.3) } | ||
+ | } , | ||
+ | $$ | ||
for points in class 2, | for points in class 2, | ||
− | + | $$ | |
+ | | T _ {m} | = \ | ||
+ | \left | \sum _ {1 \leq x \leq P } | ||
+ | e ^ {2 \pi i m ( \alpha _ {n} x ^ {n} + \dots + \alpha _ {1} x) } | ||
+ | \right | \ll P ^ {1- \rho } | ||
+ | $$ | ||
− | if | + | if $ m \leq P ^ {2 \rho } $. |
+ | If, on the other hand, one puts | ||
− | + | $$ | |
+ | \delta _ {s} = z _ {s} p ^ {s} ,\ \ | ||
+ | \delta _ {0} = \max ( | \delta _ {n} | \dots | \delta _ {1} | ), | ||
+ | $$ | ||
− | then, if | + | then, if $ m \leq P ^ {4 \nu ^ {2} } $, |
+ | for points of class 1, | ||
− | + | $$ | |
+ | | T _ {m} | \ll P ( m, Q) ^ \nu Q ^ {- \nu + \epsilon } | ||
+ | $$ | ||
or even | or even | ||
− | + | $$ | |
+ | | T _ {m} | \ll PQ ^ {- \nu + \epsilon } \delta _ {0} ^ {- \nu } | ||
+ | \ \textrm{ if } \delta _ {0} \geq 1. | ||
+ | $$ | ||
− | 3) Vinogradov's estimates for trigonometric sums with prime numbers. Let | + | 3) Vinogradov's estimates for trigonometric sums with prime numbers. Let $ \epsilon \leq 0.001 $. |
+ | Also, let the points of $ n $-dimensional space be subdivided into classes, in accordance with the notation of theorem 2), as follows. | ||
Class 1a comprises those points satisfying the condition | Class 1a comprises those points satisfying the condition | ||
− | + | $$ | |
+ | Q \leq e ^ {u} ^ \epsilon ,\ \ | ||
+ | \delta _ {0} \leq e ^ {u} ^ \epsilon ,\ \ | ||
+ | \textrm{ where } u = \mathop{\rm log} P. | ||
+ | $$ | ||
Class 1b comprises those points not in class 1a and satisfying the condition | Class 1b comprises those points not in class 1a and satisfying the condition | ||
− | + | $$ | |
+ | Q \leq P ^ {0.2 \nu } ,\ \ | ||
+ | \delta \leq P ^ \nu . | ||
+ | $$ | ||
Finally, all other points belong to class 2. | Finally, all other points belong to class 2. | ||
Line 47: | Line 106: | ||
For points in class 1a one sets | For points in class 1a one sets | ||
− | + | $$ | |
+ | \Delta = u ^ {9 \epsilon } | ||
+ | Q ^ {- 0.5 \nu + \epsilon ^ \prime } ,\ \ | ||
+ | \mu = ( m, Q) ^ {0.5 \nu } , | ||
+ | $$ | ||
or even | or even | ||
− | + | $$ | |
+ | \Delta = u ^ {9 \epsilon } | ||
+ | \delta _ {0} ^ {- 0.5 \nu } ,\ \ | ||
+ | \mu = m ^ {- 0.5 \nu } \ \ | ||
+ | \textrm{ if } \delta _ {0} \geq 1. | ||
+ | $$ | ||
− | For points in class 1b, setting | + | For points in class 1b, setting $ \epsilon = 2 \epsilon ^ \prime $, |
+ | one defines | ||
− | + | $$ | |
+ | \Delta = Q ^ {- 0.5 + \epsilon _ {3} } ,\ \ | ||
+ | \mu = ( m, Q) ^ {0.5 \nu } \ \ | ||
+ | \textrm{ if } Q > e ^ {u ^ \epsilon } , | ||
+ | $$ | ||
− | + | $$ | |
+ | \Delta = Q ^ {- 0.5 \nu + \epsilon _ {3} } \delta _ {0} ^ {- 0.5 \nu + \epsilon _ {3} } ,\ \mu = 1 \ \textrm{ if } \delta _ {0} > e ^ {u ^ \epsilon } | ||
+ | $$ | ||
− | (if | + | (if $ Q > e ^ {u ^ \epsilon } $, |
+ | $ \delta _ {0} > e ^ {u ^ \epsilon } $, | ||
+ | any of the above pairs of values of $ \Delta $ | ||
+ | and $ \mu $ | ||
+ | may be taken). Finally, one sets | ||
− | + | $$ | |
+ | \Delta = P ^ {- \rho _ {1} } ,\ \ | ||
+ | \rho _ {1} = \ | ||
+ | { | ||
+ | \frac{1}{17 n ^ {2} ( 2 \mathop{\rm log} n + \mathop{\rm log} \mathop{\rm log} n + 2.9) } | ||
+ | } ,\ \ | ||
+ | \mu = 1 | ||
+ | $$ | ||
for points in class 2. Then | for points in class 2. Then | ||
− | + | $$ | |
+ | \left | \sum _ {p \leq P } | ||
+ | e ^ {2 \pi i m ( \alpha _ {n} p ^ {n} + \dots + \alpha _ {1} p) } | ||
+ | \right | \ll \begin{array}{c} | ||
+ | P \\ | ||
+ | u | ||
+ | \end{array} | ||
+ | \Delta \mu | ||
+ | $$ | ||
− | if | + | if $ m \leq \Delta ^ {- 2} $. |
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> I.M. Vinogradov, "The method of trigonometric sums in the theory of numbers" , Interscience (1954) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> L.-K. Hua, "Abschätzungen von Exponentialsummen und ihre Anwendung in der Zahlentheorie" , ''Enzyklopaedie der Mathematischen Wissenschaften mit Einschluss ihrer Anwendungen'' , '''1''' : 2 (1959) (Heft 13, Teil 1)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> I.M. Vinogradov, "The method of trigonometric sums in the theory of numbers" , Interscience (1954) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> L.-K. Hua, "Abschätzungen von Exponentialsummen und ihre Anwendung in der Zahlentheorie" , ''Enzyklopaedie der Mathematischen Wissenschaften mit Einschluss ihrer Anwendungen'' , '''1''' : 2 (1959) (Heft 13, Teil 1)</TD></TR></table> |
Latest revision as of 13:30, 14 May 2022
The name of a number of theorems of I.M. Vinogradov. The following ones are the best known.
1) Vinogradov's estimate for character sums (cf. Dirichlet character). If $ \chi $ is a non-principal character mod $ D $, then if $ N > 0 $, $ M \geq 1 $,
$$ \left | \sum _ {n = N + 1 } ^ { {n } + M } \chi ( n) \right | \leq \sqrt D \mathop{\rm log} D. $$
2) Vinogradov's estimate for Weyl sums (cf. Weyl sum). Let $ n \geq 12 $ be a constant and let $ \nu = 1/n $. Furthermore, let the points of $ n $-dimensional space be subdivided into two classes — class 1 and class 2. A point in class 1 is a point
$$ \left ( \frac{a _ {n} }{q _ {n} } + z _ {n} \dots \frac{a _ {1} }{q _ {1} } + z _ {1} \right ) $$
where the first terms are rational irreducible fractions with positive denumerators, with lowest common multiple $ Q $ which is not larger than $ p ^ \nu $, while the second term satisfies the condition
$$ | z _ {s} | \leq p ^ {- s + \nu } . $$
A point in class 2 is a point not belonging to class 1. Then, putting
$$ \rho = \ { \frac{1}{8 n ^ {2} ( \mathop{\rm log} n + 0.5 \mathop{\rm log} \mathop{\rm log} n + 1.3) } } , $$
for points in class 2,
$$ | T _ {m} | = \ \left | \sum _ {1 \leq x \leq P } e ^ {2 \pi i m ( \alpha _ {n} x ^ {n} + \dots + \alpha _ {1} x) } \right | \ll P ^ {1- \rho } $$
if $ m \leq P ^ {2 \rho } $. If, on the other hand, one puts
$$ \delta _ {s} = z _ {s} p ^ {s} ,\ \ \delta _ {0} = \max ( | \delta _ {n} | \dots | \delta _ {1} | ), $$
then, if $ m \leq P ^ {4 \nu ^ {2} } $, for points of class 1,
$$ | T _ {m} | \ll P ( m, Q) ^ \nu Q ^ {- \nu + \epsilon } $$
or even
$$ | T _ {m} | \ll PQ ^ {- \nu + \epsilon } \delta _ {0} ^ {- \nu } \ \textrm{ if } \delta _ {0} \geq 1. $$
3) Vinogradov's estimates for trigonometric sums with prime numbers. Let $ \epsilon \leq 0.001 $. Also, let the points of $ n $-dimensional space be subdivided into classes, in accordance with the notation of theorem 2), as follows.
Class 1a comprises those points satisfying the condition
$$ Q \leq e ^ {u} ^ \epsilon ,\ \ \delta _ {0} \leq e ^ {u} ^ \epsilon ,\ \ \textrm{ where } u = \mathop{\rm log} P. $$
Class 1b comprises those points not in class 1a and satisfying the condition
$$ Q \leq P ^ {0.2 \nu } ,\ \ \delta \leq P ^ \nu . $$
Finally, all other points belong to class 2.
For points in class 1a one sets
$$ \Delta = u ^ {9 \epsilon } Q ^ {- 0.5 \nu + \epsilon ^ \prime } ,\ \ \mu = ( m, Q) ^ {0.5 \nu } , $$
or even
$$ \Delta = u ^ {9 \epsilon } \delta _ {0} ^ {- 0.5 \nu } ,\ \ \mu = m ^ {- 0.5 \nu } \ \ \textrm{ if } \delta _ {0} \geq 1. $$
For points in class 1b, setting $ \epsilon = 2 \epsilon ^ \prime $, one defines
$$ \Delta = Q ^ {- 0.5 + \epsilon _ {3} } ,\ \ \mu = ( m, Q) ^ {0.5 \nu } \ \ \textrm{ if } Q > e ^ {u ^ \epsilon } , $$
$$ \Delta = Q ^ {- 0.5 \nu + \epsilon _ {3} } \delta _ {0} ^ {- 0.5 \nu + \epsilon _ {3} } ,\ \mu = 1 \ \textrm{ if } \delta _ {0} > e ^ {u ^ \epsilon } $$
(if $ Q > e ^ {u ^ \epsilon } $, $ \delta _ {0} > e ^ {u ^ \epsilon } $, any of the above pairs of values of $ \Delta $ and $ \mu $ may be taken). Finally, one sets
$$ \Delta = P ^ {- \rho _ {1} } ,\ \ \rho _ {1} = \ { \frac{1}{17 n ^ {2} ( 2 \mathop{\rm log} n + \mathop{\rm log} \mathop{\rm log} n + 2.9) } } ,\ \ \mu = 1 $$
for points in class 2. Then
$$ \left | \sum _ {p \leq P } e ^ {2 \pi i m ( \alpha _ {n} p ^ {n} + \dots + \alpha _ {1} p) } \right | \ll \begin{array}{c} P \\ u \end{array} \Delta \mu $$
if $ m \leq \Delta ^ {- 2} $.
References
[1] | I.M. Vinogradov, "The method of trigonometric sums in the theory of numbers" , Interscience (1954) (Translated from Russian) |
[2] | L.-K. Hua, "Abschätzungen von Exponentialsummen und ihre Anwendung in der Zahlentheorie" , Enzyklopaedie der Mathematischen Wissenschaften mit Einschluss ihrer Anwendungen , 1 : 2 (1959) (Heft 13, Teil 1) |
Vinogradov estimates. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Vinogradov_estimates&oldid=14934