Difference between revisions of "Gauss interpolation formula"
(Importing text file) |
m (fixing subscript) |
||
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | g0434401.png | ||
+ | $#A+1 = 13 n = 0 | ||
+ | $#C+1 = 13 : ~/encyclopedia/old_files/data/G043/G.0403440 Gauss interpolation formula | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | A formula in which the nodes (cf. [[Node|Node]]) nearest to the interpolation point $ x $ | |
+ | are used as interpolation nodes. If $ x = x _ {0} + th $, | ||
+ | the formula | ||
− | + | $$ \tag{1 } | |
+ | G _ {2n + 1 } | ||
+ | ( x _ {0} + th) = \ | ||
+ | f _ {0} + f _ {1/2} ^ { 1 } t + | ||
+ | f _ {0} ^ { 2 } | ||
+ | \frac{t ( t - 1) }{2!} | ||
+ | + \dots + | ||
+ | $$ | ||
− | + | $$ | |
+ | + | ||
+ | f _ {0} ^ { 2n } | ||
+ | \frac{t ( t ^ {2} - 1) \dots [ t | ||
+ | ^ {2} - ( n - 1) ^ {2} ] ( t - n) }{( 2n)! } | ||
+ | , | ||
+ | $$ | ||
− | + | written with respect to the nodes $ x _ {0} , x _ {0} + h $, | |
+ | $ h _ {0} - h \dots x _ {0} + nh $, | ||
+ | $ x _ {0} - nh $ | ||
+ | is called the Gauss forward interpolation formula, while the formula | ||
− | + | $$ \tag{2 } | |
+ | G _ {2n + 1 } ( x _ {0} + th) = \ | ||
+ | f _ {0} + f _ {- 1/2} ^ { 1 } t + f _ {0} ^ { 2 } | ||
− | + | \frac{t ( t + 1) }{2! } | |
+ | + \dots + | ||
+ | $$ | ||
+ | |||
+ | $$ | ||
+ | + | ||
+ | f _ {0} ^ { 2n } | ||
+ | \frac{t ( t ^ {2} - 1) \dots [ t | ||
+ | ^ {2} - ( n - 1) ^ {2} ] ( t + n) }{( 2n)! } | ||
+ | , | ||
+ | $$ | ||
+ | |||
+ | written with respect to the nodes $ x _ {0} , x - h $, | ||
+ | $ x _ {0} + h \dots x _ {0} - nh $, | ||
+ | $ x _ {0} + nh $ | ||
+ | is called the Gauss backward interpolation formula, [[#References|[1]]], [[#References|[2]]]. Formulas (1) and (2) employ finite differences, defined as follows: | ||
+ | |||
+ | $$ | ||
+ | f _ {i + 1/2 } ^ { 1 } = f _ {i + 1 } - f _ {i} ,\ \ | ||
+ | f _ {i} ^ { m } = \ | ||
+ | f _ {i + 1/2 } ^ { m - 1 } - | ||
+ | f _ {i - 1/2 } ^ { m - 1 } . | ||
+ | $$ | ||
The advantage of Gauss' interpolation formulas consists in the fact that this selection of interpolation nodes ensures the best approximation of the residual term of all possible choices, while the ordering of the nodes by their distances from the interpolation point reduces the numerical error in the interpolation. | The advantage of Gauss' interpolation formulas consists in the fact that this selection of interpolation nodes ensures the best approximation of the residual term of all possible choices, while the ordering of the nodes by their distances from the interpolation point reduces the numerical error in the interpolation. | ||
Line 19: | Line 69: | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> I.S. Berezin, N.P. Zhidkov, "Computing methods" , '''1''' , Pergamon (1973) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> N.S. Bakhvalov, "Numerical methods: analysis, algebra, ordinary differential equations" , MIR (1977) (Translated from Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> I.S. Berezin, N.P. Zhidkov, "Computing methods" , '''1''' , Pergamon (1973) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> N.S. Bakhvalov, "Numerical methods: analysis, algebra, ordinary differential equations" , MIR (1977) (Translated from Russian)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> P.J. Davis, "Interpolation and approximation" , Dover, reprint (1975) pp. 108–126</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> F.B. Hildebrand, "Introduction to numerical analysis" , McGraw-Hill (1974)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> J.F. Steffensen, "Interpolation" , Chelsea, reprint (1950)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> P.J. Davis, "Interpolation and approximation" , Dover, reprint (1975) pp. 108–126</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> F.B. Hildebrand, "Introduction to numerical analysis" , McGraw-Hill (1974)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> J.F. Steffensen, "Interpolation" , Chelsea, reprint (1950)</TD></TR></table> |
Latest revision as of 08:38, 13 May 2022
A formula in which the nodes (cf. Node) nearest to the interpolation point $ x $
are used as interpolation nodes. If $ x = x _ {0} + th $,
the formula
$$ \tag{1 } G _ {2n + 1 } ( x _ {0} + th) = \ f _ {0} + f _ {1/2} ^ { 1 } t + f _ {0} ^ { 2 } \frac{t ( t - 1) }{2!} + \dots + $$
$$ + f _ {0} ^ { 2n } \frac{t ( t ^ {2} - 1) \dots [ t ^ {2} - ( n - 1) ^ {2} ] ( t - n) }{( 2n)! } , $$
written with respect to the nodes $ x _ {0} , x _ {0} + h $, $ h _ {0} - h \dots x _ {0} + nh $, $ x _ {0} - nh $ is called the Gauss forward interpolation formula, while the formula
$$ \tag{2 } G _ {2n + 1 } ( x _ {0} + th) = \ f _ {0} + f _ {- 1/2} ^ { 1 } t + f _ {0} ^ { 2 } \frac{t ( t + 1) }{2! } + \dots + $$
$$ + f _ {0} ^ { 2n } \frac{t ( t ^ {2} - 1) \dots [ t ^ {2} - ( n - 1) ^ {2} ] ( t + n) }{( 2n)! } , $$
written with respect to the nodes $ x _ {0} , x - h $, $ x _ {0} + h \dots x _ {0} - nh $, $ x _ {0} + nh $ is called the Gauss backward interpolation formula, [1], [2]. Formulas (1) and (2) employ finite differences, defined as follows:
$$ f _ {i + 1/2 } ^ { 1 } = f _ {i + 1 } - f _ {i} ,\ \ f _ {i} ^ { m } = \ f _ {i + 1/2 } ^ { m - 1 } - f _ {i - 1/2 } ^ { m - 1 } . $$
The advantage of Gauss' interpolation formulas consists in the fact that this selection of interpolation nodes ensures the best approximation of the residual term of all possible choices, while the ordering of the nodes by their distances from the interpolation point reduces the numerical error in the interpolation.
References
[1] | I.S. Berezin, N.P. Zhidkov, "Computing methods" , 1 , Pergamon (1973) (Translated from Russian) |
[2] | N.S. Bakhvalov, "Numerical methods: analysis, algebra, ordinary differential equations" , MIR (1977) (Translated from Russian) |
Comments
References
[a1] | P.J. Davis, "Interpolation and approximation" , Dover, reprint (1975) pp. 108–126 |
[a2] | F.B. Hildebrand, "Introduction to numerical analysis" , McGraw-Hill (1974) |
[a3] | J.F. Steffensen, "Interpolation" , Chelsea, reprint (1950) |
Gauss interpolation formula. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Gauss_interpolation_formula&oldid=13324