Difference between revisions of "Homology functor"
(Importing text file) |
m (fixing superscript) |
||
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
− | A functor on an [[Abelian category|Abelian category]] that defines a certain homological structure on it. A system | + | <!-- |
+ | h0477801.png | ||
+ | $#A+1 = 21 n = 0 | ||
+ | $#C+1 = 21 : ~/encyclopedia/old_files/data/H047/H.0407780 Homology functor | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
+ | A functor on an [[Abelian category|Abelian category]] that defines a certain homological structure on it. A system $ H = {( H _ {i} ) } _ {i \in \mathbf Z } $ | ||
+ | of covariant additive functors from an Abelian category $ {\mathcal A} $ | ||
+ | into an Abelian category $ {\mathcal A} _ {1} $ | ||
+ | is called a homology functor if the following axioms are satisfied. | ||
1) For each exact sequence | 1) For each exact sequence | ||
− | + | $$ | |
+ | 0 \rightarrow A ^ \prime \rightarrow A \rightarrow A ^ {\prime\prime} \rightarrow 0 | ||
+ | $$ | ||
− | and each | + | and each $ i $, |
+ | in $ {\mathcal A} $ | ||
+ | a morphism $ \partial _ {i} : H _ {i+ 1} ( A ^ {\prime\prime} ) \rightarrow H _ {i} ( A ^ \prime ) $ | ||
+ | is given, which is known as the connecting or boundary morphism. | ||
2) The sequence | 2) The sequence | ||
− | + | $$ | |
+ | \dots \rightarrow H _ { i + 1 } ( A ^ \prime ) \rightarrow H _ {i + 1 } ( A) \rightarrow \ | ||
+ | H _ {i + 1 } ( A ^ {\prime\prime} ) \rightarrow ^ { {\partial _ i } } | ||
+ | $$ | ||
− | + | $$ | |
+ | \rightarrow ^ { {\partial _ i} } H _ {i} ( A ^ \prime ) \rightarrow \dots , | ||
+ | $$ | ||
called the homology sequence, is exact. | called the homology sequence, is exact. | ||
− | Thus, let | + | Thus, let $ {\mathcal A} = K( \mathop{\rm Ab} ) $ |
+ | be the category of chain complexes of Abelian groups, and let $ \mathop{\rm Ab} $ | ||
+ | be the category of Abelian groups. The functors $ H _ {i} : K( \mathop{\rm Ab} ) \rightarrow \mathop{\rm Ab} $ | ||
+ | which assign to a complex $ K _ {\mathbf . } $ | ||
+ | the corresponding homology groups $ H _ {i} ( K _ {\mathbf . } ) $ | ||
+ | define a homology functor. | ||
− | Let | + | Let $ F: {\mathcal A} \mapsto {\mathcal A} _ {1} $ |
+ | be an additive covariant functor for which the left derived functors $ R _ {i} F $ ($ R _ {i} F = 0 $, | ||
+ | $ i < 0 $) | ||
+ | are defined (cf. [[Derived functor|Derived functor]]). The system $ ( R _ {i} F ) _ {i \in \mathbf Z } $ | ||
+ | will then define a homology functor from $ {\mathcal A} $ | ||
+ | into $ {\mathcal A} _ {1} $. | ||
Another example of a homology functor is the [[Hyperhomology functor|hyperhomology functor]]. | Another example of a homology functor is the [[Hyperhomology functor|hyperhomology functor]]. |
Latest revision as of 07:11, 10 May 2022
A functor on an Abelian category that defines a certain homological structure on it. A system $ H = {( H _ {i} ) } _ {i \in \mathbf Z } $
of covariant additive functors from an Abelian category $ {\mathcal A} $
into an Abelian category $ {\mathcal A} _ {1} $
is called a homology functor if the following axioms are satisfied.
1) For each exact sequence
$$ 0 \rightarrow A ^ \prime \rightarrow A \rightarrow A ^ {\prime\prime} \rightarrow 0 $$
and each $ i $, in $ {\mathcal A} $ a morphism $ \partial _ {i} : H _ {i+ 1} ( A ^ {\prime\prime} ) \rightarrow H _ {i} ( A ^ \prime ) $ is given, which is known as the connecting or boundary morphism.
2) The sequence
$$ \dots \rightarrow H _ { i + 1 } ( A ^ \prime ) \rightarrow H _ {i + 1 } ( A) \rightarrow \ H _ {i + 1 } ( A ^ {\prime\prime} ) \rightarrow ^ { {\partial _ i } } $$
$$ \rightarrow ^ { {\partial _ i} } H _ {i} ( A ^ \prime ) \rightarrow \dots , $$
called the homology sequence, is exact.
Thus, let $ {\mathcal A} = K( \mathop{\rm Ab} ) $ be the category of chain complexes of Abelian groups, and let $ \mathop{\rm Ab} $ be the category of Abelian groups. The functors $ H _ {i} : K( \mathop{\rm Ab} ) \rightarrow \mathop{\rm Ab} $ which assign to a complex $ K _ {\mathbf . } $ the corresponding homology groups $ H _ {i} ( K _ {\mathbf . } ) $ define a homology functor.
Let $ F: {\mathcal A} \mapsto {\mathcal A} _ {1} $ be an additive covariant functor for which the left derived functors $ R _ {i} F $ ($ R _ {i} F = 0 $, $ i < 0 $) are defined (cf. Derived functor). The system $ ( R _ {i} F ) _ {i \in \mathbf Z } $ will then define a homology functor from $ {\mathcal A} $ into $ {\mathcal A} _ {1} $.
Another example of a homology functor is the hyperhomology functor.
A cohomology functor is defined in a dual manner.
References
[1] | A. Grothendieck, "Sur quelques points d'algèbre homologique" Tohoku Math. J. , 9 (1957) pp. 119–221 |
Homology functor. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Homology_functor&oldid=13881