Difference between revisions of "Derived functor"
(Importing text file) |
m (fixing superscripts) |
||
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | d0312901.png | ||
+ | $#A+1 = 33 n = 0 | ||
+ | $#C+1 = 33 : ~/encyclopedia/old_files/data/D031/D.0301290 Derived functor | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | A functor "measuring" the deviation of a given functor from being exact. Let $ T ( A , C ) $ | |
+ | be an additive functor from the product of the category of $ R _ {1} $-modules with the category of $ R _ {2} $-modules into the category of $ R $-modules that is covariant in the first argument and contravariant in the second argument. From an injective resolution $ X $ | ||
+ | of $ A $ | ||
+ | and a projective resolution $ Y $ | ||
+ | of $ C $ | ||
+ | one obtains a doubly-graded complex $ T( X , Y ) $. | ||
+ | The homology of the associated single complex $ T ( A , C ) $ | ||
+ | does not depend on the choice of resolutions, has functorial properties and is called the right derived functor $ R ^ {n} T ( A , C ) $ | ||
+ | of $ T ( A , C ) $. | ||
+ | The basic property of a derived functor is the existence of long exact sequences | ||
− | + | $$ | |
+ | \rightarrow R ^ {n} T ( A ^ \prime , C ) \rightarrow R ^ {n} T ( A , C ) \rightarrow R ^ {n} | ||
+ | T ( A ^ {\prime\prime} , C ) \rightarrow | ||
+ | $$ | ||
− | + | $$ | |
+ | \rightarrow \ | ||
+ | R ^ {n+ 1} T ( A ^ \prime , C ) \rightarrow \dots | ||
+ | $$ | ||
+ | |||
+ | $$ | ||
+ | \rightarrow R ^ {n} T ( A , C ^ {\prime\prime} ) \rightarrow R ^ {n} T ( | ||
+ | A , C ) \rightarrow R ^ {n} T ( A , C ^ \prime ) \rightarrow | ||
+ | $$ | ||
+ | |||
+ | $$ | ||
+ | \rightarrow \ | ||
+ | R ^ {n+ 1} T ( A , C ^ {\prime\prime} ) \rightarrow \dots , | ||
+ | $$ | ||
induced by short exact sequences | induced by short exact sequences | ||
− | + | $$ | |
+ | 0 \rightarrow A ^ \prime \rightarrow A \rightarrow A ^ {\prime\prime} \rightarrow 0, | ||
+ | $$ | ||
− | + | $$ | |
+ | 0 \rightarrow C ^ \prime \rightarrow C \rightarrow C ^ {\prime\prime} \rightarrow 0 . | ||
+ | $$ | ||
− | The left derived functor is defined analogously. The derived functor of | + | The left derived functor is defined analogously. The derived functor of $ \mathop{\rm Hom} _ {R} $ |
+ | is denoted by $ \mathop{\rm Ext} _ {R} ^ {n} $. | ||
+ | The group $ \mathop{\rm Ext} _ {R} ^ {1} ( A , C ) $ | ||
+ | classifies extensions of $ A $ | ||
+ | with kernel $ C $ | ||
+ | up to equivalence (cf. [[Baer multiplication|Baer multiplication]]; [[Cohomology of algebras|Cohomology of algebras]]). | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> H. Cartan, S. Eilenberg, "Homological algebra" , Princeton Univ. Press (1956)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> S. MacLane, "Homology" , Springer (1963)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> H. Cartan, S. Eilenberg, "Homological algebra" , Princeton Univ. Press (1956)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> S. MacLane, "Homology" , Springer (1963)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | The above article does not explain the sense in which | + | The above article does not explain the sense in which $ R ^ {n} T $ |
+ | measures the deviation of $ T $ | ||
+ | from being exact. The point is that if $ T $ | ||
+ | is left exact (i.e. preserves the exactness of sequences of the form $ 0 \rightarrow A ^ \prime \rightarrow A \rightarrow A ^ {\prime\prime} $ | ||
+ | in the fist variable and of the form $ C ^ \prime \rightarrow C \rightarrow C ^ {\prime\prime} \rightarrow 0 $ | ||
+ | in the second), then $ R ^ {0} T $ | ||
+ | is naturally isomorphic to $ T $; | ||
+ | if further $ T $ | ||
+ | is exact, then $ R ^ {n} T = 0 $ | ||
+ | for all $ n > 0 $. | ||
+ | Derived functors may also be defined for additive functors of a single variable between module categories, or, more generally, between arbitrary Abelian categories, provided the necessary injective or projective resolutions exist in the domain category. |
Latest revision as of 07:09, 10 May 2022
A functor "measuring" the deviation of a given functor from being exact. Let $ T ( A , C ) $
be an additive functor from the product of the category of $ R _ {1} $-modules with the category of $ R _ {2} $-modules into the category of $ R $-modules that is covariant in the first argument and contravariant in the second argument. From an injective resolution $ X $
of $ A $
and a projective resolution $ Y $
of $ C $
one obtains a doubly-graded complex $ T( X , Y ) $.
The homology of the associated single complex $ T ( A , C ) $
does not depend on the choice of resolutions, has functorial properties and is called the right derived functor $ R ^ {n} T ( A , C ) $
of $ T ( A , C ) $.
The basic property of a derived functor is the existence of long exact sequences
$$ \rightarrow R ^ {n} T ( A ^ \prime , C ) \rightarrow R ^ {n} T ( A , C ) \rightarrow R ^ {n} T ( A ^ {\prime\prime} , C ) \rightarrow $$
$$ \rightarrow \ R ^ {n+ 1} T ( A ^ \prime , C ) \rightarrow \dots $$
$$ \rightarrow R ^ {n} T ( A , C ^ {\prime\prime} ) \rightarrow R ^ {n} T ( A , C ) \rightarrow R ^ {n} T ( A , C ^ \prime ) \rightarrow $$
$$ \rightarrow \ R ^ {n+ 1} T ( A , C ^ {\prime\prime} ) \rightarrow \dots , $$
induced by short exact sequences
$$ 0 \rightarrow A ^ \prime \rightarrow A \rightarrow A ^ {\prime\prime} \rightarrow 0, $$
$$ 0 \rightarrow C ^ \prime \rightarrow C \rightarrow C ^ {\prime\prime} \rightarrow 0 . $$
The left derived functor is defined analogously. The derived functor of $ \mathop{\rm Hom} _ {R} $ is denoted by $ \mathop{\rm Ext} _ {R} ^ {n} $. The group $ \mathop{\rm Ext} _ {R} ^ {1} ( A , C ) $ classifies extensions of $ A $ with kernel $ C $ up to equivalence (cf. Baer multiplication; Cohomology of algebras).
References
[1] | H. Cartan, S. Eilenberg, "Homological algebra" , Princeton Univ. Press (1956) |
[2] | S. MacLane, "Homology" , Springer (1963) |
Comments
The above article does not explain the sense in which $ R ^ {n} T $ measures the deviation of $ T $ from being exact. The point is that if $ T $ is left exact (i.e. preserves the exactness of sequences of the form $ 0 \rightarrow A ^ \prime \rightarrow A \rightarrow A ^ {\prime\prime} $ in the fist variable and of the form $ C ^ \prime \rightarrow C \rightarrow C ^ {\prime\prime} \rightarrow 0 $ in the second), then $ R ^ {0} T $ is naturally isomorphic to $ T $; if further $ T $ is exact, then $ R ^ {n} T = 0 $ for all $ n > 0 $. Derived functors may also be defined for additive functors of a single variable between module categories, or, more generally, between arbitrary Abelian categories, provided the necessary injective or projective resolutions exist in the domain category.
Derived functor. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Derived_functor&oldid=15566