Difference between pages "Regularity criteria" and "Reflection"
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
m (fixing spaces) |
||
Line 1: | Line 1: | ||
<!-- | <!-- | ||
− | + | r0805101.png | |
− | $#A+1 = | + | $#A+1 = 63 n = 0 |
− | $#C+1 = | + | $#C+1 = 63 : ~/encyclopedia/old_files/data/R080/R.0800510 Reflection |
Automatically converted into TeX, above some diagnostics. | Automatically converted into TeX, above some diagnostics. | ||
Please remove this comment and the {{TEX|auto}} line below, | Please remove this comment and the {{TEX|auto}} line below, | ||
Line 11: | Line 11: | ||
{{TEX|done}} | {{TEX|done}} | ||
− | + | A mapping $ \sigma $ | |
+ | of an $ n $-dimensional simply-connected space $ X ^ {n} $ | ||
+ | of constant curvature (i.e. of a Euclidean or affine space $ E ^ {n} $, | ||
+ | a sphere $ S ^ {n} $ | ||
+ | or a hyperbolic (Lobachevskii) space $ \Lambda ^ {n} $) | ||
+ | the set of fixed points $ \Gamma $ | ||
+ | of which is an $ ( n- 1) $-dimensional hyperplane. The set $ \Gamma $ | ||
+ | is called the mirror of the mapping $ \sigma $; | ||
+ | in other words, $ \sigma $ | ||
+ | is a reflection in $ \Gamma $. | ||
+ | Every reflection is uniquely defined by its mirror. The order (period) of a reflection in the group of all motions of $ X ^ {n} $ | ||
+ | is equal to 2, i.e. $ \sigma ^ {2} = \mathop{\rm Id} _ {X ^ {n} } $. | ||
− | + | The Euclidean or affine space $ E ^ {n} $ | |
+ | can be identified with the vector space $ V ^ {n} $ | ||
+ | of its parallel translations. The mapping $ \sigma $ | ||
+ | is then a linear orthogonal transformation of $ V ^ {n} $ | ||
+ | with matrix | ||
− | + | $$ | |
− | $ | + | \left \| |
− | the | + | \begin{array}{lllllr} |
+ | 1 &{} &{} &{} &{} & 0 \\ | ||
+ | {} &\cdot &{} &{} &{} &{} \\ | ||
+ | {} &{} &\cdot &{} &{} &{} \\ | ||
+ | {} &{} &{} &\cdot &{} &{} \\ | ||
+ | {} &{} &{} &{} & 1 &{} \\ | ||
+ | 0 &{} &{} &{} &{} &- 1 \\ | ||
+ | \end{array} | ||
+ | \right \| | ||
+ | $$ | ||
+ | |||
+ | in a certain orthonormal basis, and conversely, every orthogonal transformation of $ V ^ {n} $ | ||
+ | with this matrix in a certain orthonormal basis is a reflection in $ E ^ {n} $. | ||
+ | More generally, a linear transformation $ \phi $ | ||
+ | of an arbitrary vector space $ W $ | ||
+ | over a field $ k $, | ||
+ | of characteristic other than 2, is called a linear reflection if $ \phi ^ {2} = \mathop{\rm Id} _ {W} $ | ||
+ | and if the rank of the transformation $ \mathop{\rm Id} - \phi $ | ||
+ | is equal to $ 1 $. | ||
+ | In this case, the subspace $ W _ {1} $ | ||
+ | of fixed vectors relative to $ \phi $ | ||
+ | has codimension $ 1 $ | ||
+ | in $ W $, | ||
+ | the subspace $ W _ {-1} $ | ||
+ | of eigenvectors with eigenvalue $ - 1 $ | ||
+ | has dimension $ 1 $ | ||
+ | and $ W = W _ {1} \oplus W _ {-1} $. | ||
+ | If $ \alpha $ | ||
+ | is a linear form on $ W $ | ||
+ | such that $ \alpha ( W) = 0 $ | ||
+ | when $ w \in W _ {1} $, | ||
+ | and if $ h \in W _ {-1} $ | ||
+ | is an element such that $ \alpha ( h) = 2 $, | ||
+ | then $ \phi $ | ||
+ | is defined by the formula | ||
+ | |||
+ | $$ | ||
+ | \phi w = w - \alpha ( w) h,\ w \in W. | ||
+ | $$ | ||
− | $ | + | The description of a reflection in an arbitrary simply-connected space $ X ^ {n} $ |
− | + | of constant curvature can be reduced to the description of linear reflections in the following way. Every such space $ X ^ {n} $ | |
− | + | can be imbedded as a hypersurface in a real $ ( n+ 1) $-dimensional vector space $ V ^ {n+} 1 $ | |
− | + | in such a way that the motions of $ X ^ {n} $ | |
− | + | can be extended to linear transformations of $ V ^ {n+1} $. | |
− | + | Moreover, in a suitable coordinate system in $ V ^ {n+1} $ | |
− | + | the equations of the hypersurface can be written in the following way: | |
− | \ | + | |
− | + | $$ | |
+ | x _ {0} ^ {2} + \dots + x _ {n} ^ {2} = 1 \ \ | ||
+ | \textrm{ for } S ^ {n} ; | ||
$$ | $$ | ||
− | + | $$ | |
− | + | x _ {0} = 1 \ \textrm{ for } E ^ {n} ; | |
− | + | $$ | |
− | $$ | + | $$ |
− | + | x _ {0} ^ {2} - \dots - x _ {n} ^ {2} = 1 \ \textrm{ and } | |
− | + | \ x _ {0} > 0 \ \textrm{ for } \Lambda ^ {n} . | |
− | |||
− | \textrm{ | ||
− | |||
− | \ | ||
$$ | $$ | ||
− | + | Every hypersurface in $ X ^ {n} $, | |
− | + | given this imbedding, is the intersection with $ X ^ {n} $ | |
+ | of a certain $ n $-dimensional subspace in $ V ^ {n+} 1 $, | ||
+ | and every reflection in $ X ^ {n} $ | ||
+ | is induced by a linear reflection in $ V ^ {n+} 1 $. | ||
− | + | If, in the definition of a linear reflection, the requirement that $ \phi ^ {2} = \mathop{\rm Id} _ {W} $ | |
− | + | is dropped, then the more general concept of a pseudo-reflection is obtained. If $ k $ | |
− | + | is the field of complex numbers and $ \phi $ | |
+ | is a pseudo-reflection of finite order (not necessarily equal to 2), then $ \phi $ | ||
+ | is called a unitary reflection. Every biholomorphic automorphism of finite order of a bounded symmetric domain in a complex space the set of fixed points of which has a complex codimension 1 is also called a unitary reflection. | ||
− | + | See also [[Reflection group|Reflection group]]. | |
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> | + | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> N. Bourbaki, "Groupes et algèbres de Lie" , ''Eléments de mathématiques'' , Hermann (1968) pp. Chapts. 4–6</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> E.B. Vinberg, "Discrete linear groups generated by reflections" ''Math. USSR Izv.'' , '''35''' : 5 (1971) pp. 1083–1119 ''Izv. Akad. Nauk SSSR Ser. Mat.'' , '''35''' : 5 (1971) pp. 1072–1112</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> E. Gottschling, "Reflections in bounded symmetric domains" ''Comm. Pure Appl. Math.'' , '''22''' (1969) pp. 693–714</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> B.A. Rozenfel'd, "Non-Euclidean spaces" , Moscow (1969) (In Russian)</TD></TR></table> |
====Comments==== | ====Comments==== | ||
− | + | The spelling reflexion also occurs in the literature. | |
− | + | A basic fact is that the reflections generate the [[Orthogonal group|orthogonal group]]; see [[#References|[a2]]], Sects. 8.12.12, 13.7.12. | |
− | + | ||
− | + | ====References==== | |
− | + | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> B.A. [B.A. Rozenfel'd] Rosenfel'd, "A history of non-euclidean geometry" , Springer (1988) (Translated from Russian)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> M. Berger, "Geometry" , '''1–2''' , Springer (1987) (Translated from French)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> H.S.M. Coxeter, "Introduction to geometry" , Wiley (1963)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> M. Greenberg, "Euclidean and non-euclidean geometry" , Freeman (1980)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> B. Artmann, "Lineare Algebra" , Birkhäuser (1986)</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> P.R. Halmos, "Finite-dimensional vector spaces" , v. Nostrand (1958)</TD></TR></table> |
Revision as of 11:22, 21 March 2022
A mapping $ \sigma $
of an $ n $-dimensional simply-connected space $ X ^ {n} $
of constant curvature (i.e. of a Euclidean or affine space $ E ^ {n} $,
a sphere $ S ^ {n} $
or a hyperbolic (Lobachevskii) space $ \Lambda ^ {n} $)
the set of fixed points $ \Gamma $
of which is an $ ( n- 1) $-dimensional hyperplane. The set $ \Gamma $
is called the mirror of the mapping $ \sigma $;
in other words, $ \sigma $
is a reflection in $ \Gamma $.
Every reflection is uniquely defined by its mirror. The order (period) of a reflection in the group of all motions of $ X ^ {n} $
is equal to 2, i.e. $ \sigma ^ {2} = \mathop{\rm Id} _ {X ^ {n} } $.
The Euclidean or affine space $ E ^ {n} $ can be identified with the vector space $ V ^ {n} $ of its parallel translations. The mapping $ \sigma $ is then a linear orthogonal transformation of $ V ^ {n} $ with matrix
$$ \left \| \begin{array}{lllllr} 1 &{} &{} &{} &{} & 0 \\ {} &\cdot &{} &{} &{} &{} \\ {} &{} &\cdot &{} &{} &{} \\ {} &{} &{} &\cdot &{} &{} \\ {} &{} &{} &{} & 1 &{} \\ 0 &{} &{} &{} &{} &- 1 \\ \end{array} \right \| $$
in a certain orthonormal basis, and conversely, every orthogonal transformation of $ V ^ {n} $ with this matrix in a certain orthonormal basis is a reflection in $ E ^ {n} $. More generally, a linear transformation $ \phi $ of an arbitrary vector space $ W $ over a field $ k $, of characteristic other than 2, is called a linear reflection if $ \phi ^ {2} = \mathop{\rm Id} _ {W} $ and if the rank of the transformation $ \mathop{\rm Id} - \phi $ is equal to $ 1 $. In this case, the subspace $ W _ {1} $ of fixed vectors relative to $ \phi $ has codimension $ 1 $ in $ W $, the subspace $ W _ {-1} $ of eigenvectors with eigenvalue $ - 1 $ has dimension $ 1 $ and $ W = W _ {1} \oplus W _ {-1} $. If $ \alpha $ is a linear form on $ W $ such that $ \alpha ( W) = 0 $ when $ w \in W _ {1} $, and if $ h \in W _ {-1} $ is an element such that $ \alpha ( h) = 2 $, then $ \phi $ is defined by the formula
$$ \phi w = w - \alpha ( w) h,\ w \in W. $$
The description of a reflection in an arbitrary simply-connected space $ X ^ {n} $ of constant curvature can be reduced to the description of linear reflections in the following way. Every such space $ X ^ {n} $ can be imbedded as a hypersurface in a real $ ( n+ 1) $-dimensional vector space $ V ^ {n+} 1 $ in such a way that the motions of $ X ^ {n} $ can be extended to linear transformations of $ V ^ {n+1} $. Moreover, in a suitable coordinate system in $ V ^ {n+1} $ the equations of the hypersurface can be written in the following way:
$$ x _ {0} ^ {2} + \dots + x _ {n} ^ {2} = 1 \ \ \textrm{ for } S ^ {n} ; $$
$$ x _ {0} = 1 \ \textrm{ for } E ^ {n} ; $$
$$ x _ {0} ^ {2} - \dots - x _ {n} ^ {2} = 1 \ \textrm{ and } \ x _ {0} > 0 \ \textrm{ for } \Lambda ^ {n} . $$
Every hypersurface in $ X ^ {n} $, given this imbedding, is the intersection with $ X ^ {n} $ of a certain $ n $-dimensional subspace in $ V ^ {n+} 1 $, and every reflection in $ X ^ {n} $ is induced by a linear reflection in $ V ^ {n+} 1 $.
If, in the definition of a linear reflection, the requirement that $ \phi ^ {2} = \mathop{\rm Id} _ {W} $ is dropped, then the more general concept of a pseudo-reflection is obtained. If $ k $ is the field of complex numbers and $ \phi $ is a pseudo-reflection of finite order (not necessarily equal to 2), then $ \phi $ is called a unitary reflection. Every biholomorphic automorphism of finite order of a bounded symmetric domain in a complex space the set of fixed points of which has a complex codimension 1 is also called a unitary reflection.
See also Reflection group.
References
[1] | N. Bourbaki, "Groupes et algèbres de Lie" , Eléments de mathématiques , Hermann (1968) pp. Chapts. 4–6 |
[2] | E.B. Vinberg, "Discrete linear groups generated by reflections" Math. USSR Izv. , 35 : 5 (1971) pp. 1083–1119 Izv. Akad. Nauk SSSR Ser. Mat. , 35 : 5 (1971) pp. 1072–1112 |
[3] | E. Gottschling, "Reflections in bounded symmetric domains" Comm. Pure Appl. Math. , 22 (1969) pp. 693–714 |
[4] | B.A. Rozenfel'd, "Non-Euclidean spaces" , Moscow (1969) (In Russian) |
Comments
The spelling reflexion also occurs in the literature.
A basic fact is that the reflections generate the orthogonal group; see [a2], Sects. 8.12.12, 13.7.12.
References
[a1] | B.A. [B.A. Rozenfel'd] Rosenfel'd, "A history of non-euclidean geometry" , Springer (1988) (Translated from Russian) |
[a2] | M. Berger, "Geometry" , 1–2 , Springer (1987) (Translated from French) |
[a3] | H.S.M. Coxeter, "Introduction to geometry" , Wiley (1963) |
[a4] | M. Greenberg, "Euclidean and non-euclidean geometry" , Freeman (1980) |
[a5] | B. Artmann, "Lineare Algebra" , Birkhäuser (1986) |
[a6] | P.R. Halmos, "Finite-dimensional vector spaces" , v. Nostrand (1958) |
Regularity criteria. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Regularity_criteria&oldid=49557