Namespaces
Variants
Actions

Difference between pages "Regularity criteria" and "Reflection"

From Encyclopedia of Mathematics
(Difference between pages)
Jump to: navigation, search
m (tex encoded by computer)
 
m (fixing spaces)
 
Line 1: Line 1:
 
<!--
 
<!--
r0809101.png
+
r0805101.png
$#A+1 = 13 n = 0
+
$#A+1 = 63 n = 0
$#C+1 = 13 : ~/encyclopedia/old_files/data/R080/R.0800910 Regularity criteria
+
$#C+1 = 63 : ~/encyclopedia/old_files/data/R080/R.0800510 Reflection
 
Automatically converted into TeX, above some diagnostics.
 
Automatically converted into TeX, above some diagnostics.
 
Please remove this comment and the {{TEX|auto}} line below,
 
Please remove this comment and the {{TEX|auto}} line below,
Line 11: Line 11:
 
{{TEX|done}}
 
{{TEX|done}}
  
''for summation methods''
+
A mapping  $  \sigma $
 +
of an  $  n $-dimensional simply-connected space  $  X  ^ {n} $
 +
of constant curvature (i.e. of a Euclidean or affine space  $  E  ^ {n} $,
 +
a sphere  $  S  ^ {n} $
 +
or a hyperbolic (Lobachevskii) space  $  \Lambda  ^ {n} $)
 +
the set of fixed points  $  \Gamma $
 +
of which is an  $  ( n- 1) $-dimensional hyperplane. The set  $  \Gamma $
 +
is called the mirror of the mapping  $  \sigma $;
 +
in other words,  $  \sigma $
 +
is a reflection in  $  \Gamma $.
 +
Every reflection is uniquely defined by its mirror. The order (period) of a reflection in the group of all motions of  $  X  ^ {n} $
 +
is equal to 2, i.e.  $  \sigma  ^ {2} =  \mathop{\rm Id} _ {X  ^ {n}  } $.
  
Conditions for the regularity of [[Summation methods|summation methods]].
+
The Euclidean or affine space  $  E  ^ {n} $
 +
can be identified with the vector space  $  V  ^ {n} $
 +
of its parallel translations. The mapping  $  \sigma $
 +
is then a linear orthogonal transformation of  $  V  ^ {n} $
 +
with matrix
  
For a [[Matrix summation method|matrix summation method]] defined by a transformation of a sequence into a sequence by means of a matrix $  \| a _ {nk} \| $,  
+
$$
n , k = 1 , 2 \dots $
+
\left \|
the conditions
+
\begin{array}{lllllr}
 +
1  &{}  &{}  &{}  &{}  & 0  \\
 +
{}  &\cdot  &{}  &{}  &{}  &{}  \\
 +
{}  &{}  &\cdot  &{}  &{}  &{}  \\
 +
{}  &{}  &{}  &\cdot  &{}  &{}  \\
 +
{}  &{}  &{}  &{}  & 1  &{}  \\
 +
0  &{}  &{}  &{}  &{}  &- 1  \\
 +
\end{array}
 +
\right \|
 +
$$
 +
 
 +
in a certain orthonormal basis, and conversely, every orthogonal transformation of  $  V  ^ {n} $
 +
with this matrix in a certain orthonormal basis is a reflection in  $  E  ^ {n} $.
 +
More generally, a linear transformation $  \phi $
 +
of an arbitrary vector space  $  W $
 +
over a field  $  k $,
 +
of characteristic other than 2, is called a linear reflection if $  \phi  ^ {2} =  \mathop{\rm Id} _ {W} $
 +
and if the rank of the transformation  $  \mathop{\rm Id} - \phi $
 +
is equal to  $  1 $.
 +
In this case, the subspace  $  W _ {1} $
 +
of fixed vectors relative to  $  \phi $
 +
has codimension $  1 $
 +
in  $  W $,  
 +
the subspace  $  W _ {-1} $
 +
of eigenvectors with eigenvalue  $  - 1 $
 +
has dimension  $  1 $
 +
and  $  W = W _ {1} \oplus W _ {-1} $.
 +
If  $  \alpha $
 +
is a linear form on  $  W $
 +
such that  $  \alpha ( W) = 0 $
 +
when  $  w \in W _ {1} $,  
 +
and if  $  h \in W _ {-1} $
 +
is an element such that  $  \alpha ( h) = 2 $,
 +
then  $  \phi $
 +
is defined by the formula
 +
 
 +
$$
 +
\phi w  =  w - \alpha ( w) h,\  w \in W.
 +
$$
  
$$ \tag{1 }
+
The description of a reflection in an arbitrary simply-connected space  $ X  ^ {n} $
\left .  
+
of constant curvature can be reduced to the description of linear reflections in the following way. Every such space  $  X  ^ {n} $
\begin{array}{l}
+
can be imbedded as a hypersurface in a real  $  ( n+ 1) $-dimensional vector space  $ V ^ {n+} 1 $
\textrm{ 1)  } \ \sum _ { k= } 1 ^ \infty  | a _ {nk} | \leq  M ; \\
+
in such a way that the motions of  $  X  ^ {n} $
\textrm{ 2) } \ \lim\limits _ {n \rightarrow \infty } a _ {nk=  0 ;  \\
+
can be extended to linear transformations of $  V ^ {n+1} $.
\textrm{ 3)  } \ \lim\limits _ {n \rightarrow \infty \sum _ { k= } 1 ^ \infty 
+
Moreover, in a suitable coordinate system in  $ V ^ {n+1} $
a _ {nk}  =  1 \\
+
the equations of the hypersurface can be written in the following way:
\end{array}
+
 
  \right \}
+
$$
 +
x _ {0^ {2} + \dots + x _ {n}  ^ {2}  =  1 \ \  
 +
\textrm{ for S  ^ {n} ;
 
$$
 
$$
  
are necessary and sufficient for regularity. For the matrix summation method defined by a transformation of a series into a sequence by means of a matrix  $ \| g _ {nk} \| $,
+
$$
$ n , k = 1 , 2 \dots $
+
x _ {0}  = 1 \ \textrm{ for }  E  ^ {n} ;
necessary and sufficient conditions for regularity are as follows:
+
$$
  
$$ \tag{2 }
+
$$  
\left .
+
x _ {0^ {2} - \dots - x _ {n} ^ {2} 1 \  \textrm{ and }
\begin{array}{l}
+
x _ {0> 0 \ \textrm{ for }  \Lambda  ^ {n} .
\textrm{ 1) } \  \sum _ { k= } 1 ^  \infty  | g _ {n,k} - g _ {n,k-} 1 \leq  M ; \\
 
\textrm{ 2)  } \  \lim\limits _ {n \rightarrow \infty g _ {nk} =  1 . \\
 
\end{array}
 
  \right \}
 
 
$$
 
$$
  
The conditions (1) were originally established by O. Toeplitz [[#References|[1]]] for triangular summation methods, and were then extended by H. Steinhaus [[#References|[2]]] to arbitrary matrix summation methods. In connection with this, a matrix satisfying conditions (1) is sometimes called a Toeplitz matrix or a  $  T $-
+
Every hypersurface in  $  X  ^ {n} $,  
matrix.
+
given this imbedding, is the intersection with  $  X  ^ {n} $
 +
of a certain  $  n $-dimensional subspace in  $  V  ^ {n+} 1 $,
 +
and every reflection in  $  X  ^ {n} $
 +
is induced by a linear reflection in V  ^ {n+} 1 $.
  
For a [[Semi-continuous summation method|semi-continuous summation method]], defined by a transformation of a sequence into a function by means of a semi-continuous matrix $  \| a _ {k} ( \omega ) \| $
+
If, in the definition of a linear reflection, the requirement that $  \phi  ^ {2} \mathop{\rm Id} _ {W} $
or a transformation of a series into a function by means of a semi-continuous matrix \| g _ {k} ( \omega ) \| $,
+
is dropped, then the more general concept of a pseudo-reflection is obtained. If $  k $
there are regularity criteria analogous to conditions (1) and (2), respectively.
+
is the field of complex numbers and  $  \phi $
 +
is a pseudo-reflection of finite order (not necessarily equal to 2), then  $  \phi $
 +
is called a unitary reflection. Every biholomorphic automorphism of finite order of a bounded symmetric domain in a complex space the set of fixed points of which has a complex codimension 1 is also called a unitary reflection.
  
A regular matrix summation method is completely regular if all entries of the transformation matrix are non-negative. This condition is in general not necessary for complete regularity.
+
See also [[Reflection group|Reflection group]].
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  O. Toeplitz,  ''Prace Mat. Fiz.'' , '''22''' (1911)  pp. 113–119</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  H. Steinhaus,  "Some remarks on the generalization of the concept of limit" , ''Selected Math. Papers'' , Polish Acad. Sci.  (1985)  pp. 88–100</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  G.H. Hardy,  "Divergent series" , Clarendon Press (1949)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  R.G. Cooke,  "Infinite matrices and sequence spaces" , Macmillan (1950)</TD></TR></table>
+
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  N. Bourbaki"Groupes et algèbres de Lie" , ''Eléments de mathématiques'' , Hermann (1968)  pp. Chapts. 4–6</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  E.B. Vinberg,  "Discrete linear groups generated by reflections" ''Math. USSR Izv.'' , '''35''' :  5  (1971)  pp. 1083–1119  ''Izv. Akad. Nauk SSSR Ser. Mat.'' , '''35''' :  5 (1971)  pp. 1072–1112</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  E. Gottschling,  "Reflections in bounded symmetric domains" ''Comm. Pure Appl. Math.'' , '''22''' (1969) pp. 693–714</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  B.A. Rozenfel'd,  "Non-Euclidean spaces" , Moscow  (1969) (In Russian)</TD></TR></table>
  
 
====Comments====
 
====Comments====
Cf. also [[Regular summation methods|Regular summation methods]].
+
The spelling reflexion also occurs in the literature.
  
Usually, the phrase [[Toeplitz matrix|Toeplitz matrix]] refers to a matrix $ ( a _ {ij} ) $
+
A basic fact is that the reflections generate the [[Orthogonal group|orthogonal group]]; see [[#References|[a2]]], Sects. 8.12.12, 13.7.12.
with $ a _ {ij} = a _ {kl} $
+
 
for all $ i, j, k, l $
+
====References====
with $ i- j= k- l $.
+
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  B.A. [B.A. Rozenfel'd] Rosenfel'd,  "A history of non-euclidean geometry" , Springer (1988) (Translated from Russian)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  M. Berger,  "Geometry" , '''1–2''' , Springer (1987) (Translated from French)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  H.S.M. Coxeter,  "Introduction to geometry" , Wiley (1963)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> M. Greenberg,  "Euclidean and non-euclidean geometry" , Freeman  (1980)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  B. Artmann,   "Lineare Algebra" , Birkhäuser (1986)</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> P.R. Halmos,  "Finite-dimensional vector spaces" , v. Nostrand  (1958)</TD></TR></table>

Revision as of 11:22, 21 March 2022


A mapping $ \sigma $ of an $ n $-dimensional simply-connected space $ X ^ {n} $ of constant curvature (i.e. of a Euclidean or affine space $ E ^ {n} $, a sphere $ S ^ {n} $ or a hyperbolic (Lobachevskii) space $ \Lambda ^ {n} $) the set of fixed points $ \Gamma $ of which is an $ ( n- 1) $-dimensional hyperplane. The set $ \Gamma $ is called the mirror of the mapping $ \sigma $; in other words, $ \sigma $ is a reflection in $ \Gamma $. Every reflection is uniquely defined by its mirror. The order (period) of a reflection in the group of all motions of $ X ^ {n} $ is equal to 2, i.e. $ \sigma ^ {2} = \mathop{\rm Id} _ {X ^ {n} } $.

The Euclidean or affine space $ E ^ {n} $ can be identified with the vector space $ V ^ {n} $ of its parallel translations. The mapping $ \sigma $ is then a linear orthogonal transformation of $ V ^ {n} $ with matrix

$$ \left \| \begin{array}{lllllr} 1 &{} &{} &{} &{} & 0 \\ {} &\cdot &{} &{} &{} &{} \\ {} &{} &\cdot &{} &{} &{} \\ {} &{} &{} &\cdot &{} &{} \\ {} &{} &{} &{} & 1 &{} \\ 0 &{} &{} &{} &{} &- 1 \\ \end{array} \right \| $$

in a certain orthonormal basis, and conversely, every orthogonal transformation of $ V ^ {n} $ with this matrix in a certain orthonormal basis is a reflection in $ E ^ {n} $. More generally, a linear transformation $ \phi $ of an arbitrary vector space $ W $ over a field $ k $, of characteristic other than 2, is called a linear reflection if $ \phi ^ {2} = \mathop{\rm Id} _ {W} $ and if the rank of the transformation $ \mathop{\rm Id} - \phi $ is equal to $ 1 $. In this case, the subspace $ W _ {1} $ of fixed vectors relative to $ \phi $ has codimension $ 1 $ in $ W $, the subspace $ W _ {-1} $ of eigenvectors with eigenvalue $ - 1 $ has dimension $ 1 $ and $ W = W _ {1} \oplus W _ {-1} $. If $ \alpha $ is a linear form on $ W $ such that $ \alpha ( W) = 0 $ when $ w \in W _ {1} $, and if $ h \in W _ {-1} $ is an element such that $ \alpha ( h) = 2 $, then $ \phi $ is defined by the formula

$$ \phi w = w - \alpha ( w) h,\ w \in W. $$

The description of a reflection in an arbitrary simply-connected space $ X ^ {n} $ of constant curvature can be reduced to the description of linear reflections in the following way. Every such space $ X ^ {n} $ can be imbedded as a hypersurface in a real $ ( n+ 1) $-dimensional vector space $ V ^ {n+} 1 $ in such a way that the motions of $ X ^ {n} $ can be extended to linear transformations of $ V ^ {n+1} $. Moreover, in a suitable coordinate system in $ V ^ {n+1} $ the equations of the hypersurface can be written in the following way:

$$ x _ {0} ^ {2} + \dots + x _ {n} ^ {2} = 1 \ \ \textrm{ for } S ^ {n} ; $$

$$ x _ {0} = 1 \ \textrm{ for } E ^ {n} ; $$

$$ x _ {0} ^ {2} - \dots - x _ {n} ^ {2} = 1 \ \textrm{ and } \ x _ {0} > 0 \ \textrm{ for } \Lambda ^ {n} . $$

Every hypersurface in $ X ^ {n} $, given this imbedding, is the intersection with $ X ^ {n} $ of a certain $ n $-dimensional subspace in $ V ^ {n+} 1 $, and every reflection in $ X ^ {n} $ is induced by a linear reflection in $ V ^ {n+} 1 $.

If, in the definition of a linear reflection, the requirement that $ \phi ^ {2} = \mathop{\rm Id} _ {W} $ is dropped, then the more general concept of a pseudo-reflection is obtained. If $ k $ is the field of complex numbers and $ \phi $ is a pseudo-reflection of finite order (not necessarily equal to 2), then $ \phi $ is called a unitary reflection. Every biholomorphic automorphism of finite order of a bounded symmetric domain in a complex space the set of fixed points of which has a complex codimension 1 is also called a unitary reflection.

See also Reflection group.

References

[1] N. Bourbaki, "Groupes et algèbres de Lie" , Eléments de mathématiques , Hermann (1968) pp. Chapts. 4–6
[2] E.B. Vinberg, "Discrete linear groups generated by reflections" Math. USSR Izv. , 35 : 5 (1971) pp. 1083–1119 Izv. Akad. Nauk SSSR Ser. Mat. , 35 : 5 (1971) pp. 1072–1112
[3] E. Gottschling, "Reflections in bounded symmetric domains" Comm. Pure Appl. Math. , 22 (1969) pp. 693–714
[4] B.A. Rozenfel'd, "Non-Euclidean spaces" , Moscow (1969) (In Russian)

Comments

The spelling reflexion also occurs in the literature.

A basic fact is that the reflections generate the orthogonal group; see [a2], Sects. 8.12.12, 13.7.12.

References

[a1] B.A. [B.A. Rozenfel'd] Rosenfel'd, "A history of non-euclidean geometry" , Springer (1988) (Translated from Russian)
[a2] M. Berger, "Geometry" , 1–2 , Springer (1987) (Translated from French)
[a3] H.S.M. Coxeter, "Introduction to geometry" , Wiley (1963)
[a4] M. Greenberg, "Euclidean and non-euclidean geometry" , Freeman (1980)
[a5] B. Artmann, "Lineare Algebra" , Birkhäuser (1986)
[a6] P.R. Halmos, "Finite-dimensional vector spaces" , v. Nostrand (1958)
How to Cite This Entry:
Regularity criteria. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Regularity_criteria&oldid=49557
This article was adapted from an original article by I.I. Volkov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article