Difference between revisions of "Arithmetic space"
(Importing text file) |
m (fixing dots) |
||
(2 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | a0133802.png | ||
+ | $#A+1 = 19 n = 0 | ||
+ | $#C+1 = 19 : ~/encyclopedia/old_files/data/A013/A.0103380 Arithmetic space, | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | ''number space, coordinate space, real $ n $-space'' | |
− | + | A Cartesian power $ \mathbf R ^ {n} $ | |
+ | of the set of real numbers $ \mathbf R $ | ||
+ | having the structure of a linear topological space. The addition operation is here defined by the formula: | ||
− | + | $$ | |
+ | ( x _ {1}, \dots, x _ {n} ) + ( x _ {1} ^ \prime , \dots, x _ {n} ^ \prime ) | ||
+ | = ( x _ {1} + x _ {1} ^ \prime , \dots, x _ {n} + x _ {n} ^ \prime ); | ||
+ | $$ | ||
− | + | while multiplication by a number $ \lambda \in \mathbf R $ | |
+ | is defined by the formula | ||
− | + | $$ | |
+ | \lambda ( x _ {1}, \dots, x _ {n} ) = \ | ||
+ | ( \lambda x _ {1}, \dots, \lambda x _ {n} ). | ||
+ | $$ | ||
− | + | The topology in $ \mathbf R ^ {n} $ | |
+ | is the topology of the direct product of $ n $ | ||
+ | copies of $ \mathbf R $; | ||
+ | its base is formed by open $ n $-dimensional parallelepiped: | ||
− | + | $$ | |
+ | I = \{ {( x _ {1}, \dots, x _ {n} ) \in \mathbf R ^ {n} } : { | ||
+ | a _ {i} < x _ {i} < b _ {i} , i = 1, \dots, n } \} | ||
+ | , | ||
+ | $$ | ||
− | + | where the numbers $ a _ {1}, \dots, a _ {n} $ | |
+ | and $ b _ {1}, \dots, b _ {n} $ | ||
+ | are given. | ||
− | + | The real $ n $-space $ \mathbf R ^ {n} $ | |
+ | is also a normed space with respect to the norm | ||
− | + | $$ | |
+ | \| x \| = \sqrt {x _ {1} ^ {2} + \dots +x _ {n} ^ {2} } , | ||
+ | $$ | ||
− | where | + | where $ x = ( x _ {1}, \dots, x _ {n} ) \in \mathbf R ^ {n} $, |
+ | and is a Euclidean space with respect to the scalar product | ||
+ | |||
+ | $$ | ||
+ | \langle x, y \rangle = \sum _ {i=1 } ^ { n } | ||
+ | x _ {i} y _ {i} , | ||
+ | $$ | ||
+ | |||
+ | where $ x = ( x _ {1}, \dots, x _ {n} ) , y = ( y _ {1}, \dots, y _ {n} ) \in \mathbf R ^ {n} $. |
Latest revision as of 08:25, 4 March 2022
number space, coordinate space, real $ n $-space
A Cartesian power $ \mathbf R ^ {n} $ of the set of real numbers $ \mathbf R $ having the structure of a linear topological space. The addition operation is here defined by the formula:
$$ ( x _ {1}, \dots, x _ {n} ) + ( x _ {1} ^ \prime , \dots, x _ {n} ^ \prime ) = ( x _ {1} + x _ {1} ^ \prime , \dots, x _ {n} + x _ {n} ^ \prime ); $$
while multiplication by a number $ \lambda \in \mathbf R $ is defined by the formula
$$ \lambda ( x _ {1}, \dots, x _ {n} ) = \ ( \lambda x _ {1}, \dots, \lambda x _ {n} ). $$
The topology in $ \mathbf R ^ {n} $ is the topology of the direct product of $ n $ copies of $ \mathbf R $; its base is formed by open $ n $-dimensional parallelepiped:
$$ I = \{ {( x _ {1}, \dots, x _ {n} ) \in \mathbf R ^ {n} } : { a _ {i} < x _ {i} < b _ {i} , i = 1, \dots, n } \} , $$
where the numbers $ a _ {1}, \dots, a _ {n} $ and $ b _ {1}, \dots, b _ {n} $ are given.
The real $ n $-space $ \mathbf R ^ {n} $ is also a normed space with respect to the norm
$$ \| x \| = \sqrt {x _ {1} ^ {2} + \dots +x _ {n} ^ {2} } , $$
where $ x = ( x _ {1}, \dots, x _ {n} ) \in \mathbf R ^ {n} $, and is a Euclidean space with respect to the scalar product
$$ \langle x, y \rangle = \sum _ {i=1 } ^ { n } x _ {i} y _ {i} , $$
where $ x = ( x _ {1}, \dots, x _ {n} ) , y = ( y _ {1}, \dots, y _ {n} ) \in \mathbf R ^ {n} $.
Arithmetic space. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Arithmetic_space&oldid=13139